enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Skewness - Wikipedia

    en.wikipedia.org/wiki/Skewness

    It is sometimes referred to as Pearson's moment coefficient of skewness, [5] or simply the moment coefficient of skewness, [4] but should not be confused with Pearson's other skewness statistics (see below). The last equality expresses skewness in terms of the ratio of the third cumulant κ 3 to the 1.5th power of the second cumulant κ 2.

  3. D'Agostino's K-squared test - Wikipedia

    en.wikipedia.org/wiki/D'Agostino's_K-squared_test

    In the following, { x i } denotes a sample of n observations, g 1 and g 2 are the sample skewness and kurtosis, m j ’s are the j-th sample central moments, and ¯ is the sample mean. Frequently in the literature related to normality testing, the skewness and kurtosis are denoted as √ β 1 and β 2 respectively.

  4. L-moment - Wikipedia

    en.wikipedia.org/wiki/L-moment

    Grouping these by order statistic counts the number of ways an element of an n element sample can be the j th element of an r element subset, and yields formulas of the form below. Direct estimators for the first four L-moments in a finite sample of n observations are: [6]

  5. Multimodal distribution - Wikipedia

    en.wikipedia.org/wiki/Multimodal_distribution

    The formula for a finite sample is [27] = + + () where n is the number of items in the sample, g is the sample skewness and k is the sample excess kurtosis. The value of b for the uniform distribution is 5/9. This is also its value for the exponential distribution.

  6. Skew normal distribution - Wikipedia

    en.wikipedia.org/wiki/Skew_normal_distribution

    As long as the sample skewness ^ is not too large, these formulas provide method of moments estimates ^, ^, and ^ based on a sample's ^, ^, and ^. The maximum (theoretical) skewness is obtained by setting δ = 1 {\displaystyle {\delta =1}} in the skewness equation, giving γ 1 ≈ 0.9952717 {\displaystyle \gamma _{1}\approx 0.9952717} .

  7. Nonparametric skew - Wikipedia

    en.wikipedia.org/wiki/Nonparametric_skew

    In statistics and probability theory, the nonparametric skew is a statistic occasionally used with random variables that take real values. [1] [2] It is a measure of the skewness of a random variable's distribution—that is, the distribution's tendency to "lean" to one side or the other of the mean.

  8. Noncentral t-distribution - Wikipedia

    en.wikipedia.org/wiki/Noncentral_t-distribution

    However, the usual skewness is not generally a good measure of asymmetry for this distribution, because if the degrees of freedom is not larger than 3, the third moment does not exist at all. Even if the degrees of freedom is greater than 3, the sample estimate of the skewness is still very unstable unless the sample size is very large.

  9. Method of moments (statistics) - Wikipedia

    en.wikipedia.org/wiki/Method_of_moments_(statistics)

    In statistics, the method of moments is a method of estimation of population parameters.The same principle is used to derive higher moments like skewness and kurtosis. It starts by expressing the population moments (i.e., the expected values of powers of the random variable under consideration) as functions of the parameters of interest.