Search results
Results from the WOW.Com Content Network
U will inevitably be enriched slightly stronger than 235 U, which is a negligible effect in a once-through fuel cycle due to the low (55 ppm) share of 234 U in natural uranium but can become relevant after successive passes through an enrichment-burnup-reprocessing-enrichment cycle, depending on enrichment and burnup characteristics. 234
Isotope separation is the process of concentrating specific isotopes of a chemical element by removing other isotopes. The use of the nuclides produced is varied. The largest variety is used in research (e.g. in chemistry where atoms of "marker" nuclide are used to figure out reaction mechanisms).
To reduce the concentration of Pu-240 in the plutonium produced, weapons program plutonium production reactors (e.g. B Reactor) irradiate the uranium for a far shorter time than is normal for a nuclear power reactor. More precisely, weapons-grade plutonium is obtained from uranium irradiated to a low burnup.
Plutonium could be produced by irradiating uranium-238 in a nuclear reactor, [4] but developing and building a reactor was a task for the Manhattan Project physicists. The task for the chemists was to develop a process to separate plutonium from the other fission products produced in the reactor, to do so on an industrial scale at a time when plutonium could be produced only in microscopic ...
Infrared absorption spectra of the two UF 6 isotopes at 300 and 80 K. Schematic of a stage of an isotope separation plant for uranium enrichment with laser. An infrared laser with a wavelength of approx. 16 μm radiates at a high repetition rate onto a UF6 carrier gas mixture, which flows supersonically out of a laval nozzle.
PUREX (plutonium uranium reduction extraction) is a chemical method used to purify fuel for nuclear reactors or nuclear weapons. [7] PUREX is the de facto standard aqueous nuclear reprocessing method for the recovery of uranium and plutonium from used nuclear fuel ( spent nuclear fuel , or irradiated nuclear fuel).
Criticality accidents are divided into one of two categories: Process accidents, where controls in place to prevent any criticality are breached;; Reactor accidents, which occur due to operator errors or other unintended events (e.g., during maintenance or fuel loading) in locations intended to achieve or approach criticality, such as nuclear power plants, nuclear reactors, and nuclear ...
The Zippe-type centrifuge is a gas centrifuge designed to enrich the rare fissile isotope uranium-235 (235 U) from the mixture of isotopes found in naturally occurring uranium compounds. The isotopic separation is based on the slight difference in mass of the isotopes.