enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    Cantor's diagonal argument (among various similar names [note 1]) is a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers – informally, that there are sets which in some sense contain more elements than there are positive integers.

  3. Controversy over Cantor's theory - Wikipedia

    en.wikipedia.org/wiki/Controversy_over_Cantor's...

    This is known as Cantor's theorem. The argument below is a modern version of Cantor's argument that uses power sets (for his original argument, see Cantor's diagonal argument). By presenting a modern argument, it is possible to see which assumptions of axiomatic set theory are used.

  4. Cantor's theorem - Wikipedia

    en.wikipedia.org/wiki/Cantor's_theorem

    Cantor's theorem and its proof are closely related to two paradoxes of set theory. Cantor's paradox is the name given to a contradiction following from Cantor's theorem together with the assumption that there is a set containing all sets, the universal set. In order to distinguish this paradox from the next one discussed below, it is important ...

  5. Uncountable set - Wikipedia

    en.wikipedia.org/wiki/Uncountable_set

    The best known example of an uncountable set is the set ⁠ ⁠ of all real numbers; Cantor's diagonal argument shows that this set is uncountable. The diagonalization proof technique can also be used to show that several other sets are uncountable, such as the set of all infinite sequences of natural numbers ⁠ ⁠ (see: (sequence A102288 in the OEIS)), and the set of all subsets of the set ...

  6. Paradoxes of set theory - Wikipedia

    en.wikipedia.org/wiki/Paradoxes_of_set_theory

    In the same year the French mathematician Jules Richard used a variant of Cantor's diagonal method to obtain another contradiction in naive set theory. Consider the set A of all finite agglomerations of words. The set E of all finite definitions of real numbers is a subset of A.

  7. Continuum hypothesis - Wikipedia

    en.wikipedia.org/wiki/Continuum_hypothesis

    Cantor gave two proofs that the cardinality of the set of integers is strictly smaller than that of the set of real numbers (see Cantor's first uncountability proof and Cantor's diagonal argument). His proofs, however, give no indication of the extent to which the cardinality of the integers is less than that of the real numbers.

  8. Diagonal lemma - Wikipedia

    en.wikipedia.org/wiki/Diagonal_lemma

    The terms "diagonal lemma" or "fixed point" do not appear in Kurt Gödel's 1931 article or in Alfred Tarski's 1936 article. Rudolf Carnap (1934) was the first to prove the general self-referential lemma , [ 6 ] which says that for any formula F in a theory T satisfying certain conditions, there exists a formula ψ such that ψ ↔ F (°#( ψ ...

  9. Diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Diagonal_argument

    Diagonal argument can refer to: Diagonal argument (proof technique), proof techniques used in mathematics. A diagonal argument, in mathematics, is a technique employed in the proofs of the following theorems: Cantor's diagonal argument (the earliest) Cantor's theorem; Russell's paradox; Diagonal lemma. Gödel's first incompleteness theorem