Search results
Results from the WOW.Com Content Network
In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method.Arnoldi finds an approximation to the eigenvalues and eigenvectors of general (possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices.
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
The Arnoldi iteration reduces to the Lanczos iteration for symmetric matrices. The corresponding Krylov subspace method is the minimal residual method (MinRes) of Paige and Saunders. Unlike the unsymmetric case, the MinRes method is given by a three-term recurrence relation. It can be shown that there is no Krylov subspace method for general ...
This last procedure is the Arnoldi iteration. The Lanczos algorithm then arises as the simplification one gets from eliminating calculation steps that turn out to be trivial when is Hermitian—in particular most of the , coefficients turn out to be zero.
All algorithms that work this way are referred to as Krylov subspace methods; they are among the most successful methods currently available in numerical linear algebra. These methods can be used in situations where there is an algorithm to compute the matrix-vector multiplication without there being an explicit representation of A ...
Lis (Library of Iterative Solvers for linear systems; pronounced lis]) is a scalable parallel software library to solve discretized linear equations and eigenvalue problems that mainly arise from the numerical solution of partial differential equations using iterative methods.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
If A is not symmetric, then examples of iterative solutions to the linear problem are the generalized minimal residual method and CGN. If A is symmetric, then to solve the eigenvalue and eigenvector problem we can use the Lanczos algorithm, and if A is non-symmetric, then we can use Arnoldi iteration.