Search results
Results from the WOW.Com Content Network
A simple fraction (also known as a common fraction or vulgar fraction) [n 1] is a rational number written as a/b or , where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include 1 / 2 , − 8 / 5 , −8 / 5 , and 8 / −5 .
The space diagonal of the unit cube is √ 3. Distances between vertices of a double unit cube are square roots of the first six natural numbers.(√ 7 is not possible due to Legendre's three-square theorem.)
Algebraic operations in the solution to the quadratic equation.The radical sign √, denoting a square root, is equivalent to exponentiation to the power of 1 / 2 .The ± sign means the equation can be written with either a + or a – sign.
Another meaning for generalized continued fraction is a generalization to higher dimensions. For example, there is a close relationship between the simple continued fraction in canonical form for the irrational real number α, and the way lattice points in two dimensions lie to either side of the line y = αx. Generalizing this idea, one might ...
) Usually the resulting fraction should be simplified: the result of the division of 52 by 22 is also . This simplification may be done by factoring out the greatest common divisor . Give the answer as an integer quotient and a remainder , so 26 11 = 2 remainder 4. {\displaystyle {\tfrac {26}{11}}=2{\mbox{ remainder }}4.}
More generally, in a commutative ring, a radical ideal is an ideal I such that implies . Both notions are important in algebraic geometry, because of Hilbert's Nullstellensatz. An element of a ring that is equal to its own square is called an idempotent. In any ring, 0 and 1 are idempotents.
For example, 1 / 4 , 5 / 6 , and −101 / 100 are all irreducible fractions. On the other hand, 2 / 4 is reducible since it is equal in value to 1 / 2 , and the numerator of 1 / 2 is less than the numerator of 2 / 4 . A fraction that is reducible can be reduced by dividing both the numerator ...
Repeated application of the half-angle formulas leads to nested radicals, specifically nested square roots of 2 of the form . In general, the sine and cosine of most angles of the form β / 2 n {\displaystyle \beta /2^{n}} can be expressed using nested square roots of 2 in terms of β {\displaystyle \beta } .