Search results
Results from the WOW.Com Content Network
Diagram of a simple microscope. There are two basic types of optical microscopes: simple microscopes and compound microscopes. A simple microscope uses the optical power of a single lens or group of lenses for magnification. A compound microscope uses a system of lenses (one set enlarging the image produced by another) to achieve a much higher ...
TEM Ray Diagram with Phase Contrast Transfer Function. Contrast transfer theory provides a quantitative method to translate the exit wavefunction to a final image. Part of the analysis is based on Fourier transforms of the electron beam wavefunction. When an electron wavefunction passes through a lens, the wavefunction goes through a Fourier ...
Polarizing microscope operating principle Depiction of internal organs of a midge larva via birefringence and polarized light microscopy. Polarized light microscopy can mean any of a number of optical microscopy techniques involving polarized light. Simple techniques include illumination of the sample with polarized light.
The success of the phase-contrast microscope has led to a number of subsequent phase-imaging methods. In 1952, Georges Nomarski patented what is today known as differential interference contrast (DIC) microscopy. [8] It enhances contrast by creating artificial shadows, as if the object is illuminated from the side.
Fluorescence and confocal microscopes operating principle. Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. [1]
A bright-field microscope has many important parts including; the condenser, the objective lens, the ocular lens, the diaphragm, and the aperture. Some other pieces of the microscope that are commonly known are the arm, the head, the illuminator, the base, the stage, the adjusters, and the brightness adjuster.
This software enables users of atomic force microscopes to easily: build complex band-excitation waveforms, set up the microscope scanning conditions, configure the input and output electronics to generate the waveform as a voltage signal and capture the response of the system, perform analysis on the captured response, and display the results ...
Rays (black) coming from the object (red) at a certain angle and going through the cover-slip (orange, as is the slide at the bottom) can enter the objective (dark blue) only when immersion is used. Otherwise, the refraction at the cover-slip-air interface causes the ray to miss the objective and its information is lost.