enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    Unit fractions can also be expressed using negative exponents, as in 21, which represents 1/2, and 22, which represents 1/(2 2) or 1/4. A dyadic fraction is a common fraction in which the denominator is a power of two, e.g. ⁠ 1 / 8 ⁠ = ⁠ 1 / 2 3 ⁠. In Unicode, precomposed fraction characters are in the Number Forms block.

  3. Unit fraction - Wikipedia

    en.wikipedia.org/wiki/Unit_fraction

    Slices of approximately 1/8 of a pizza. A unit fraction is a positive fraction with one as its numerator, 1/ n. It is the multiplicative inverse (reciprocal) ...

  4. Number Forms - Wikipedia

    en.wikipedia.org/wiki/Number_Forms

    15: 0.2 Vulgar Fraction One Fifth 2155 8533 ⅖ 25: 0.4 Vulgar Fraction Two Fifths 2156 8534 ⅗ 35: 0.6 Vulgar Fraction Three Fifths 2157 8535 ⅘ 4 ⁄ 5: 0.8 Vulgar Fraction Four Fifths 2158 8536 ⅙ 1 ⁄ 6: 0.166... Vulgar Fraction One Sixth 2159 8537 ⅚ 5 ⁄ 6: 0.833... Vulgar Fraction Five Sixths 215A 8538 ⅛ 18: 0 ...

  5. Farey sequence - Wikipedia

    en.wikipedia.org/wiki/Farey_sequence

    Thus the first term to appear between ⁠ 1 / 3 ⁠ and ⁠ 2 / 5 ⁠ is ⁠ 3 / 8 ⁠, which appears in F 8. The total number of Farey neighbour pairs in F n is 2| F n | − 3. The Stern–Brocot tree is a data structure showing how the sequence is built up from 0 (= ⁠ 0 / 1 ⁠) and 1 (= ⁠ 1 / 1 ⁠), by taking successive mediants.

  6. Continued fraction - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction

    where c 1 = ⁠ 1 / a 1 ⁠, c 2 = ⁠ a 1 / a 2 ⁠, c 3 = ⁠ a 2 / a 1 a 3 ⁠, and in general c n+1 = ⁠ 1 / a n+1 c n ⁠. Second, if none of the partial denominators b i are zero we can use a similar procedure to choose another sequence { d i } to make each partial denominator a 1:

  7. Solving quadratic equations with continued fractions - Wikipedia

    en.wikipedia.org/wiki/Solving_quadratic...

    By applying the fundamental recurrence formulas we may easily compute the successive convergents of this continued fraction to be 1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, ..., where each successive convergent is formed by taking the numerator plus the denominator of the preceding term as the denominator in the next term, then adding in the ...

  8. 1/2 + 1/4 + 1/8 + 1/16 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1/2_%2B_1/4_%2B_1/8_%2B_1/...

    The tortoise, with a 10-meter advantage, Zeno argued, would win. Achilles would have to move 10 meters to catch up to the tortoise, but the tortoise would already have moved another five meters by then. Achilles would then have to move 5 meters, where the tortoise would move 2.5 meters, and so on.

  9. 1/2 − 1/4 + 1/8 − 1/16 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1/2_%E2%88%92_1/4_%2B_1/8...

    Demonstration of ⁠ 2 / 3 ⁠ via a zero-value game. A slight rearrangement of the series reads + + =. The series has the form of a positive integer plus a series containing every negative power of two with either a positive or negative sign, so it can be translated into the infinite blue-red Hackenbush string that represents the surreal number ⁠ 1 / 3 ⁠: