Search results
Results from the WOW.Com Content Network
A straightforward algorithm to multiply numbers in Montgomery form is therefore to multiply aR mod N, bR mod N, and R′ as integers and reduce modulo N. For example, to multiply 7 and 15 modulo 17 in Montgomery form, again with R = 100, compute the product of 3 and 4 to get 12 as above.
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.
The Barrett multiplication previously described requires a constant operand b to pre-compute [] ahead of time. Otherwise, the operation is not efficient. Otherwise, the operation is not efficient. It is common to use Montgomery multiplication when both operands are non-constant as it has better performance.
replacing integer multiplication by a constant with a combination of shifts, adds or subtracts; replacing integer division by a constant with a multiplication, taking advantage of the limited range of machine integers. [3] This method also works if divisor is a non-integer sufficiently greater than 1, e.g. √2 or π. [4]
This example uses peasant multiplication to multiply 11 by 3 to arrive at a result of 33. Decimal: Binary: 11 3 1011 11 5 6 101 110 2 12 10 1100 1 24 1 11000 —— —————— 33 100001 Describing the steps explicitly: 11 and 3 are written at the top
The type-generic macros that correspond to a function that is defined for only real numbers encapsulates a total of 3 different functions: float, double and long double variants of the function. The C++ language includes native support for function overloading and thus does not provide the <tgmath.h> header even as a compatibility feature.
In mathematics, the hyperoperation sequence [nb 1] is an infinite sequence of arithmetic operations (called hyperoperations in this context) [1] [11] [13] that starts with a unary operation (the successor function with n = 0).
Goresky and Klapper [5] developed the theory of these generalized multiply-with-carry generators, proving, in particular, that choosing a negative a 0 and a r –a 0 < b the carry value is always smaller than b, making the implementation efficient. The more general form of the modulus improves also the quality of the generator, albeit one ...