enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    A straightforward algorithm to multiply numbers in Montgomery form is therefore to multiply aR mod N, bR mod N, and R′ as integers and reduce modulo N. For example, to multiply 7 and 15 modulo 17 in Montgomery form, again with R = 100, compute the product of 3 and 4 to get 12 as above.

  3. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.

  4. Computational complexity of matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    The optimal number of field operations needed to multiply two square n × n matrices up to constant factors is still unknown. This is a major open question in theoretical computer science . As of January 2024 [update] , the best bound on the asymptotic complexity of a matrix multiplication algorithm is O( n 2.371552 ) .

  5. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication...

    The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:

  6. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    This example uses peasant multiplication to multiply 11 by 3 to arrive at a result of 33. Decimal: Binary: 11 3 1011 11 5 6 101 110 2 12 10 1100 1 24 1 11000 —— —————— 33 100001 Describing the steps explicitly: 11 and 3 are written at the top

  7. Basic Linear Algebra Subprograms - Wikipedia

    en.wikipedia.org/wiki/Basic_Linear_Algebra...

    Initially, these subroutines used hard-coded loops for their low-level operations. For example, if a subroutine needed to perform a matrix multiplication, then the subroutine would have three nested loops. Linear algebra programs have many common low-level operations (the so-called "kernel" operations, not related to operating systems). [14]

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Barrett reduction - Wikipedia

    en.wikipedia.org/wiki/Barrett_reduction

    The Barrett multiplication previously described requires a constant operand b to pre-compute [] ahead of time. Otherwise, the operation is not efficient. Otherwise, the operation is not efficient. It is common to use Montgomery multiplication when both operands are non-constant as it has better performance.