enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Toom–Cook multiplication - Wikipedia

    en.wikipedia.org/wiki/Toom–Cook_multiplication

    Toom-1.5 (k m = 2, k n = 1) is still degenerate: it recursively reduces one input by halving its size, but leaves the other input unchanged, hence we can make it into a multiplication algorithm only if we supply a 1 × n multiplication algorithm as a base case (whereas the true Toom–Cook algorithm reduces to constant-size base cases). It ...

  3. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.

  4. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    k 2 = a · (d − c) k 3 = b · (c + d) Real part = k 1 − k 3 Imaginary part = k 1 + k 2. This algorithm uses only three multiplications, rather than four, and five additions or subtractions rather than two. If a multiply is more expensive than three adds or subtracts, as when calculating by hand, then there is a gain in speed.

  5. Lehmer random number generator - Wikipedia

    en.wikipedia.org/wiki/Lehmer_random_number_generator

    Most commonly, the modulus is chosen as a prime number, making the choice of a coprime seed trivial (any 0 < X 0 < m will do). This produces the best-quality output, but introduces some implementation complexity, and the range of the output is unlikely to match the desired application; converting to the desired range requires an additional multiplication.

  6. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    This is a consequence of the fact that, because gcd(R, N) = 1, multiplication by R is an isomorphism on the additive group Z/NZ. For example, (7 + 15) mod 17 = 5, which in Montgomery form becomes (3 + 4) mod 17 = 7. Multiplication in Montgomery form, however, is seemingly more complicated.

  7. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    Karatsuba multiplication of az+b and cz+d (boxed), and 1234 and 567 with z=100. Magenta arrows denote multiplication, amber denotes addition, silver denotes subtraction and cyan denotes left shift. (A), (B) and (C) show recursion with z=10 to obtain intermediate values. The Karatsuba algorithm is a fast multiplication algorithm.

  8. Computational complexity of matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...

  9. C mathematical functions - Wikipedia

    en.wikipedia.org/wiki/C_mathematical_functions

    The type-generic macros that correspond to a function that is defined for only real numbers encapsulates a total of 3 different functions: float, double and long double variants of the function. The C++ language includes native support for function overloading and thus does not provide the <tgmath.h> header even as a compatibility feature.

  1. Related searches multiplication by a constant in c++ with example form of 3 0 5 0 r i d

    multiplication by a constant in c++ with example form of 3 0 5 0 r i d e