Search results
Results from the WOW.Com Content Network
Tension is the pulling or stretching force transmitted axially along an object such as a string, rope, chain, rod, truss member, or other object, so as to stretch or pull apart the object. In terms of force, it is the opposite of compression. Tension might also be described as the action-reaction pair of forces acting at each end of an object.
A small holding force exerted on one side can carry a much larger loading force on the other side; this is the principle by which a capstan-type device operates. A holding capstan is a ratchet device that can turn only in one direction; once a load is pulled into place in that direction, it can be held with a much smaller force.
It is therefore convenient to collect many of these terms in the Maxwell stress tensor, and to use tensor arithmetic to find the answer to the problem at hand. In the relativistic formulation of electromagnetism, the nine components of the Maxwell stress tensor appear, negated, as components of the electromagnetic stress–energy tensor , which ...
Stress analysis is a branch of applied physics that covers the determination of the internal distribution of internal forces in solid objects. It is an essential tool in engineering for the study and design of structures such as tunnels, dams, mechanical parts, and structural frames, under prescribed or expected loads.
In physics, Lagrangian mechanics ... the constraint force C is the tension in the rod. ... and developed by D'Alembert in 1743 to solve dynamical problems. [21] ...
Figure 2.1a Internal distribution of contact forces and couple stresses on a differential of the internal surface in a continuum, as a result of the interaction between the two portions of the continuum separated by the surface Figure 2.1b Internal distribution of contact forces and couple stresses on a differential of the internal surface in a continuum, as a result of the interaction between ...
Neglecting surface tension and viscosity, the equation was first derived by W. H. Besant in his 1859 book with the problem statement stated as An infinite mass of homogeneous incompressible fluid acted upon by no forces is at rest, and a spherical portion of the fluid is suddenly annihilated; it is required to find the instantaneous alteration of pressure at any point of the mass, and the time ...
An equation for the acceleration can be derived by analyzing forces. Assuming a massless, inextensible string and an ideal massless pulley, the only forces to consider are: tension force (T), and the weight of the two masses (W 1 and W 2). To find an acceleration, consider the forces affecting each individual mass.