Search results
Results from the WOW.Com Content Network
In this context, either an information-theoretical measure, such as functional clusters (Gerald Edelman and Giulio Tononi's functional clustering model and dynamic core hypothesis (DCH) [47]) or effective information (Tononi's integrated information theory (IIT) of consciousness [48] [49] [50]), is defined (on the basis of a reentrant process ...
Some of the oldest methods of telecommunications implicitly use many of the ideas that would later be quantified in information theory. Modern telegraphy, starting in the 1830s, used Morse code, in which more common letters (like "E", which is expressed as one "dot") are transmitted more quickly than less common letters (like "J", which is expressed by one "dot" followed by three "dashes").
Although information gain is usually a good measure for deciding the relevance of an attribute, it is not perfect. A notable problem occurs when information gain is applied to attributes that can take on a large number of distinct values. For example, suppose that one is building a decision tree for some data describing the customers of a business.
In probability theory and information theory, the mutual information (MI) of two random variables is a measure of the mutual dependence between the two variables. More specifically, it quantifies the " amount of information " (in units such as shannons ( bits ), nats or hartleys ) obtained about one random variable by observing the other random ...
Info-metrics is useful for modelling, information processing, theory building, and inference problems across the scientific spectrum. The info-metrics framework can also be used to test hypotheses about competing theories or causal mechanisms .
Articles relating to information theory, which studies the quantification, storage, and communication of information. Subcategories. This category has the following ...
In information theory, the entropy of a random variable quantifies the average level of uncertainty or information associated with the variable's potential states or possible outcomes. This measures the expected amount of information needed to describe the state of the variable, considering the distribution of probabilities across all potential ...
Many of the concepts in information theory have separate definitions and formulas for continuous and discrete cases. For example, entropy is usually defined for discrete random variables, whereas for continuous random variables the related concept of differential entropy, written (), is used (see Cover and Thomas, 2006, chapter 8).