Search results
Results from the WOW.Com Content Network
Alnico alloys can be magnetised to produce strong magnetic fields and have a high coercivity (resistance to demagnetization), thus making strong permanent magnets. Of the more commonly available magnets, only rare-earth magnets such as neodymium and samarium-cobalt are stronger.
The shape of the magnet was originally created as a replacement for the bar magnet as it makes the magnetic field stronger for a magnet of comparable strength. [5] A horseshoe magnet is stronger because both poles of the magnet are closer to each other and in the same plane which allows the magnetic lines of flux to flow along a more direct path between the poles and concentrates the magnetic ...
For a bar magnet, the direction of the magnetic moment points from the magnet's south pole to its north pole, [15] and the magnitude relates to how strong and how far apart these poles are. In SI units, the magnetic moment is specified in terms of A·m 2 (amperes times meters squared).
The magnetic pole model assumes that the magnetic forces between magnets are due to magnetic charges near the poles. This model works even close to the magnet when the magnetic field becomes more complicated, and more dependent on the detailed shape and magnetization of the magnet than just the magnetic dipole contribution.
Oats and whole grains are one of the few natural ways to boost testosterone in your bloodstream. More testosterone equals stronger orgasms. Finally, don’t forget to stay hydrated, says Johnson ...
A "horseshoe magnet" made of Alnico 5, about 1 inch high.The metal bar (bottom) is a keeper. A magnet keeper, also known historically as an armature, is a bar made from magnetically soft iron or steel, which is placed across the poles of a permanent magnet to help preserve the strength of the magnet by completing the magnetic circuit; it is important for magnets that have low magnetic ...
Correlated magnets can be programmed to interact only with other magnetic structures that have been coded to respond. Correlated magnets can even be programmed to attract and repel at the same time. Compared to conventional magnets, the correlated magnet provides much stronger holding force to the target and stronger shear resistance.
This magnetic orientation process replicates that applied by a magnetic recording tape head to the magnetic tape coating during the recording process. The principle was further described by James (Jim) M. Winey of Magnepan in 1970, for the ideal case of continuously rotating magnetization, induced by a one-sided stripe-shaped coil.