Search results
Results from the WOW.Com Content Network
The chemical structure of the outer membrane's lipopolysaccharide is often unique to specific bacterial sub-species and is responsible for many of the antigenic properties of these strains. In addition to the peptidoglycan layer the Gram-negative cell wall also contains an additional outer membrane composed of phospholipids and ...
The outer membranes of a bacterium can contain a huge number of proteins. In E. Coli for example there are around 500,000 in the membrane. [5] Bacterial outer membrane proteins typically have a unique beta barrel structure that spans the membrane. The beta barrels fold to expose a hydrophobic surface before their insertion into the outer membrane.
Instead, the extracellular forms of these Gram-negative bacteria maintain their structural integrity by relying on a layer of disulfide bond cross-linked cysteine-rich proteins, which is located between cytoplasmic membrane and outer membrane in a manner analogous to the peptidoglycan layer in other Gram-negative bacteria. [4]
Most of them are water-soluble outer membrane proteins and frequently bind hydrophobic ligands in the barrel center, as in lipocalins. Others span cell membranes and are commonly found in porins. Porin-like barrel structures are encoded by as many as 2–3% of the genes in Gram-negative bacteria. [1]
All porins form homotrimers in the outer membrane, meaning that three identical porin subunits associate together to form a porin super-structure with three channels. [5] Hydrogen bonding and dipole-dipole interactions between each monomer in the homotrimer ensure that they do not dissociate, and remain together in the outer membrane.
BamA is a β-barrel, outer membrane protein found in Gram-negative bacteria and it is the main and vital component of the β-barrel assembly machinery (BAM) complex in those bacteria. [1] BAM Complex consists of five components; BamB, BamC, BamD, BamE (all are lipoproteins ) and BamA (Outer membrane protein).
As shown in the figure to the right, the periplasmic space in gram-negative or diderm bacteria is located between the inner and outer membrane of the cell. The periplasm contains peptidoglycan and the membranes that enclose the periplasmic space contain many integral membrane proteins, which can participate in cell signaling.
Inside a cilium and a flagellum is a microtubule-based cytoskeleton called the axoneme. The axoneme of a primary cilium typically has a ring of nine outer microtubule doublets (called a 9+0 axoneme), and the axoneme of a motile cilium has two central microtubules in addition to the nine outer doublets (called a 9+2 axoneme).