Search results
Results from the WOW.Com Content Network
An example of Neyman–Pearson hypothesis testing (or null hypothesis statistical significance testing) can be made by a change to the radioactive suitcase example. If the "suitcase" is actually a shielded container for the transportation of radioactive material, then a test might be used to select among three hypotheses: no radioactive source ...
The consistent application by statisticians of Neyman and Pearson's convention of representing "the hypothesis to be tested" (or "the hypothesis to be nullified") with the expression H 0 has led to circumstances where many understand the term "the null hypothesis" as meaning "the nil hypothesis" – a statement that the results in question have ...
This analysis of variance technique requires a numeric response variable "Y" and a single explanatory variable "X", hence "one-way". [1] The ANOVA tests the null hypothesis, which states that samples in all groups are drawn from populations with the same mean values. To do this, two estimates are made of the population variance.
The p-value is widely used in statistical hypothesis testing, specifically in null hypothesis significance testing. In this method, before conducting the study, one first chooses a model (the null hypothesis) and the alpha level α (most commonly 0.05).
A one-tailed hypothesis (tested using a one-sided test) [2] is an inexact hypothesis in which the value of a parameter is specified as being either: above or equal to a certain value, or; below or equal to a certain value. A one-tailed hypothesis is said to have directionality. Fisher's original (lady tasting tea) example was a one-tailed test ...
A one-sample Student's t-test is a location test of whether the mean of a population has a value specified in a null hypothesis. In testing the null hypothesis that the population mean is equal to a specified value μ 0, one uses the statistic = ¯ /,
Under a frequentist hypothesis testing framework, this is done by calculating a test statistic (such as a t-statistic) for the dataset, which has a known theoretical probability distribution if there is no difference (the so called null hypothesis). If the actual value calculated on the sample is sufficiently unlikely to arise under the null ...
In statistical hypothesis testing, the null distribution is the probability distribution of the test statistic when the null hypothesis is true. [1] For example, in an F-test, the null distribution is an F-distribution. [2] Null distribution is a tool scientists often use when conducting experiments.