enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponential decay - Wikipedia

    en.wikipedia.org/wiki/Exponential_decay

    A quantity undergoing exponential decay. Larger decay constants make the quantity vanish much more rapidly. This plot shows decay for decay constant (λ) of 25, 5, 1, 1/5, and 1/25 for x from 0 to 5. A quantity is subject to exponential decay if it decreases at a rate proportional to its current value.

  3. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    There is a half-life describing any exponential-decay process. For example: As noted above, in radioactive decay the half-life is the length of time after which there is a 50% chance that an atom will have undergone nuclear decay. It varies depending on the atom type and isotope, and is usually determined experimentally. See List of nuclides.

  4. Half time (physics) - Wikipedia

    en.wikipedia.org/wiki/Half_time_(physics)

    Half time is the time taken by a quantity to reach one half of its extremal value, where the rate of change is proportional to the difference between the present value and the extremal value (i.e. in exponential decay processes). It is synonymous with half-life, but used in slightly different contexts.

  5. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.

  6. Bateman equation - Wikipedia

    en.wikipedia.org/wiki/Bateman_equation

    In nuclear physics, the Bateman equation is a mathematical model describing abundances and activities in a decay chain as a function of time, based on the decay rates and initial abundances. The model was formulated by Ernest Rutherford in 1905 [ 1 ] and the analytical solution was provided by Harry Bateman in 1910.

  7. Particle decay - Wikipedia

    en.wikipedia.org/wiki/Particle_decay

    Particle decay is a Poisson process, and hence the probability that a particle survives for time t before decaying (the survival function) is given by an exponential distribution whose time constant depends on the particle's velocity:

  8. Doubling time - Wikipedia

    en.wikipedia.org/wiki/Doubling_time

    The doubling time is a characteristic unit (a natural unit of scale) for the exponential growth equation, and its converse for exponential decay is the half-life. As an example, Canada's net population growth was 2.7 percent in the year 2022, dividing 72 by 2.7 gives an approximate doubling time of about 27 years.

  9. Exponentially modified Gaussian distribution - Wikipedia

    en.wikipedia.org/wiki/Exponentially_modified...

    A Gaussian minus exponential distribution has been suggested for modelling option prices. [20] If such a random variable Y has parameters μ , σ , λ , then its negative -Y has an exponentially modified Gaussian distribution with parameters -μ , σ , λ , and thus Y has mean μ − 1 λ {\displaystyle \mu -{\tfrac {1}{\lambda }}} and variance ...