Search results
Results from the WOW.Com Content Network
The symbol for torque is typically ... The traditional imperial units for torque are the pound foot (lbf-ft), or, for small values, the pound inch (lbf-in).
Torque; system unit code symbol or abbrev. notes conversion factor/N⋅m combinations Industrial: SI: Newton-metre: Nm N⋅m 1 Nm lbft; Nm lbfft; Non-SI metric: kilogram-metre: kgm kg·m 9.80665 Imperial & US customary: pound-foot: lbft lb⋅ft Pound-inch (lb.in) is also available 1.3558 Scientific: SI: newton metre: Nm N⋅m 1 Nm lbft; Nm ...
Despite this, in practice torque units are commonly called the foot-pound (denoted as either lb-ft or ft-lb) or the inch-pound (denoted as in-lb). [4] [5] Practitioners depend on context and the hyphenated abbreviations to know that these refer to neither energy nor moment of mass (as the symbol ft-lb rather than lbf-ft would imply).
Symbol Name Meaning SI unit of measure alpha: alpha particle: angular acceleration: radian per second squared (rad/s 2) fine-structure constant: unitless beta: velocity in terms of the speed of light c: unitless beta particle: gamma: Lorentz factor: unitless photon: gamma ray: shear strain: radian
The newton-metre or newton-meter (also non-hyphenated, newton metre or newton meter; symbol N⋅m [1] or N m [1]) [a] is the unit of torque (also called moment) in the International System of Units (SI). One newton-metre is equal to the torque resulting from a force of one newton applied perpendicularly to the end of a moment arm that is one ...
Greek letters are used in mathematics, science, engineering, and other areas where mathematical notation is used as symbols for constants, special functions, and also conventionally for variables representing certain quantities. In these contexts, the capital letters and the small letters represent distinct and unrelated entities.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The torque on shaft is 0.0053 N⋅m at 2 A because of the assumed radius of the rotor (exactly 1 m). Assuming a different radius would change the linear K v {\displaystyle K_{\text{v}}} but would not change the final torque result.