enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quartic equation - Wikipedia

    en.wikipedia.org/wiki/Quartic_equation

    Graph of a polynomial function of degree 4, with its 4 roots and 3 critical points. + + + + = where a ≠ 0. The quartic is the highest order polynomial equation that can be solved by radicals in the general case (i.e., one in which the coefficients can take any value).

  3. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    A square root of a number x is a number r which, when squared, becomes x: =. Every positive real number has two square roots, one positive and one negative. For example, the two square roots of 25 are 5 and −5. The positive square root is also known as the principal square root, and is denoted with a radical sign:

  4. Root of unity - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity

    Geometric representation of the 2nd to 6th root of a general complex number in polar form. For the nth root of unity, set r = 1 and φ = 0. The principal root is in black. An n th root of unity, where n is a positive integer, is a number z satisfying the equation [1] [2] =

  5. Quartic function - Wikipedia

    en.wikipedia.org/wiki/Quartic_function

    In order to determine the right sign of the square roots, one simply chooses some square root for each of the numbers α, β, and γ and uses them to compute the numbers r 1, r 2, r 3, and r 4 from the previous equalities. Then, one computes the number √ α √ β √ γ.

  6. Lill's method - Wikipedia

    en.wikipedia.org/wiki/Lill's_method

    Finding roots −1/2, −1/ √ 2, and 1/ √ 2 of the cubic 4x 3 + 2x 2 − 2x − 1, showing how negative coefficients and extended segments are handled. Each number shown on a colored line is the negative of its slope and hence a real root of the polynomial. To employ the method, a diagram is drawn starting at the origin.

  7. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Primitive root modulo m: A number g is a primitive root modulo m if, for every integer a coprime to m, there is an integer k such that g k ≡ a (mod m). A primitive root modulo m exists if and only if m is equal to 2, 4, p k or 2p k, where p is an odd prime number and k is a positive integer.

  8. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    Analogously, the inverses of tetration are often called the super-root, and the super-logarithm (In fact, all hyperoperations greater than or equal to 3 have analogous inverses); e.g., in the function =, the two inverses are the cube super-root of y and the super-logarithm base y of x.

  9. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which g k ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n.

  1. Related searches online fourth root calculator with remainder and work order number

    how to find quartic rootonline fourth root calculator with remainder and work order number 5
    quartic roots