Search results
Results from the WOW.Com Content Network
The sympathoadrenal system is a physiological connection between the sympathetic nervous system and the adrenal medulla and is crucial in an organism's physiological response to outside stimuli. [1] When the body receives sensory information, the sympathetic nervous system sends a signal to preganglionic nerve fibers , which activate the ...
[1] [2] The enteric nervous system is sometimes considered part of the autonomic nervous system, and sometimes considered an independent system. [3] The autonomic nervous system functions to regulate the body's unconscious actions. The sympathetic nervous system's primary process is to stimulate the body's fight or flight response.
The Sympathoadrenal System. Cannon proposed the existence and functional unity of the sympathoadrenal (or “sympathoadrenomedullary” or “sympathico-adrenal”) system. He theorized that the sympathetic nervous system and the adrenal gland work together as a unit to maintain homeostasis in emergencies. [23]
The sympathoadrenal medullary (SAM) axis may activate the fight-or-flight response through the sympathetic nervous system, which dedicates energy to more relevant bodily systems to acute adaptation to stress, while the parasympathetic nervous system returns the body to homeostasis.
Schematic of the HPA axis (CRH, corticotropin-releasing hormone; ACTH, adrenocorticotropic hormone) Hypothalamus, pituitary gland, and adrenal cortex The hypothalamic–pituitary–adrenal axis (HPA axis or HTPA axis) is a complex set of direct influences and feedback interactions among three components: the hypothalamus (a part of the brain located below the thalamus), the pituitary gland (a ...
Autonomic nervous system, showing splanchnic nerves in middle, and the vagus nerve as "X" in blue. The heart and organs below in list to right are regarded as viscera. The autonomic nervous system has been classically divided into the sympathetic nervous system and parasympathetic nervous system only (i.e., exclusively motor).
Neuroendocrinology is the branch of biology (specifically of physiology) which studies the interaction between the nervous system and the endocrine system; i.e. how the brain regulates the hormonal activity in the body. [1]
The sympathetic nervous system is the primary path of interaction between the immune system and the brain, and several components receive sympathetic inputs, including the thymus, spleen, and lymph nodes. However, the effects are complex, with some immune processes activated while others are inhibited.