Search results
Results from the WOW.Com Content Network
Molecularity in chemistry is the number of colliding molecular entities that are involved in a single reaction step. A reaction step involving one molecular entity is called unimolecular. A reaction step involving two molecular entities is called bimolecular. A reaction step involving three molecular entities is called trimolecular or termolecular.
This glossary of chemistry terms is a list of terms and definitions relevant to chemistry, including chemical laws, diagrams and formulae, laboratory tools, glassware, and equipment. Chemistry is a physical science concerned with the composition, structure, and properties of matter , as well as the changes it undergoes during chemical reactions ...
If the template has a separate documentation page (usually called "Template:template name/doc"), add [[Category:Chemistry formatting and function templates]] to the <includeonly> section at the bottom of that page. Otherwise, add <noinclude>[[Category:Chemistry formatting and function templates]]</noinclude>
In chemistry, molecularity is the number of molecules that come together to react in an elementary (single-step) reaction [1] and is equal to the sum of stoichiometric coefficients of reactants in the elementary reaction with effective collision (sufficient energy) and correct orientation. [2]
[[Category:Chemistry templates]] to the <includeonly> section at the bottom of that page. Otherwise, add <noinclude>[[Category:Chemistry templates]]</noinclude> to the end of the template code, making sure it starts on the same line as the code's last character.
According to collision theory the probability of three chemical species reacting simultaneously with each other in a termolecular elementary reaction is negligible. Hence such termolecular reactions are commonly referred as non-elementary reactions and can be broken down into a more fundamental set of bimolecular reactions, [ 3 ] [ 4 ] in ...
where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...
Many template reactions are only stoichiometric, and the decomplexation of the "templating ion" can be difficult. The alkali metal-templated syntheses of crown ether syntheses are notable exceptions. Metal Phthalocyanines are generated by metal-templated condensations of phthalonitriles, but the liberation of metal-free phthalocyanine is difficult.