Search results
Results from the WOW.Com Content Network
The power factor in a single-phase circuit (or balanced three-phase circuit) can be measured with the wattmeter-ammeter-voltmeter method, where the power in watts is divided by the product of measured voltage and current. The power factor of a balanced polyphase circuit is the same as that of any phase. The power factor of an unbalanced ...
Angle notation can easily describe leading and lagging current: . [1] In this equation, the value of theta is the important factor for leading and lagging current. As mentioned in the introduction above, leading or lagging current represents a time shift between the current and voltage sine curves, which is represented by the angle by which the curve is ahead or behind of where it would be ...
This ability to selectively control power factor can be exploited for power factor correction of the power system to which the motor is connected. Since most power systems of any significant size have a net lagging power factor, the presence of overexcited synchronous motors moves the system's net power factor closer to unity, improving efficiency.
An over-excited synchronous motor has a leading power factor. This makes it useful for power-factor correction of industrial loads. Both transformers and induction motors draw lagging (magnetising) currents from the line. On light loads, the power drawn by induction motors has a large reactive component and the power factor has a low value. The ...
The vector sum of V R and the voltage drops equals V S, and it is apparent in the diagrams that V S does not equal V R in magnitude or phase angle. Voltage phasor diagrams for a short transmission line serving lagging, in-phase, and leading loads. The diagrams show that the phase angle of current in the line affects voltage regulation ...
Piping and instrumentation diagram of pump with storage tank. Symbols according to EN ISO 10628 and EN 62424. A more complex example of a P&ID. A piping and instrumentation diagram (P&ID) is defined as follows: A diagram which shows the interconnection of process equipment and the instrumentation used to control the process.
In anatomy, a process (Latin: processus) is a projection or outgrowth of tissue from a larger body. [1] For instance, in a vertebra, a process may serve for muscle attachment and leverage (as in the case of the transverse and spinous processes), or to fit (forming a synovial joint), with another vertebra (as in the case of the articular processes). [2]
The zero power factor curve (also zero power factor characteristic, ZPF, ZPFC) of a synchronous generator is a plot of the output voltage as a function of the excitation current or field using a zero power factor (purely inductive) load that corresponds to rated voltage at rated current (1 p.u.).