Search results
Results from the WOW.Com Content Network
Alternatively, a triangle can be transformed into one such rectangle by first turning it into a parallelogram and then turning this into such a rectangle. By doing this for each triangle, the polygon can be decomposed into a rectangle with unit width and height equal to its area.
The angles made by each pair of arcs at the corners of a Reuleaux triangle are all equal to 120°. This is the sharpest possible angle at any vertex of any curve of constant width. [9] Additionally, among the curves of constant width, the Reuleaux triangle is the one with both the largest and the smallest inscribed equilateral triangles. [15]
The Blaschke–Lebesgue theorem says that the Reuleaux triangle has the least area of any convex curve of given constant width. [19] Every proper superset of a body of constant width has strictly greater diameter, and every Euclidean set with this property is a body of constant width.
Lifting each point from the plane to its elevated height lifts the triangles of the triangulation into three-dimensional surfaces, which form an approximation of a three-dimensional landform. A polygon triangulation is a subdivision of a given polygon into triangles meeting edge-to-edge, again with the property that the set of triangle vertices ...
Shrink the triangle to 1 / 2 height and 1 / 2 width, make three copies, and position the three shrunken triangles so that each triangle touches the two other triangles at a corner (image 2). Note the emergence of the central hole—because the three shrunken triangles can between them cover only 3 / 4 of the area of the ...
Sometimes it is desirable to have a triangulation with special properties, e.g., in which all triangles have large angles (long and narrow ("splinter") triangles are avoided). [3] Given a set of edges that connect points of the plane, the problem to determine whether they contain a triangulation is NP-complete. [4]
Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.
Estimating the height of a mountain using triangulation A triangulation station signed by iron rod [1] In trigonometry and geometry , triangulation is the process of determining the location of a point by forming triangles to the point from known points.