enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bragg's law - Wikipedia

    en.wikipedia.org/wiki/Bragg's_law

    This equation, Bragg's law, describes the condition on θ for constructive interference. [12] A map of the intensities of the scattered waves as a function of their angle is called a diffraction pattern. Strong intensities known as Bragg peaks are obtained in the diffraction pattern when the scattering angles satisfy Bragg condition.

  3. Structure factor - Wikipedia

    en.wikipedia.org/wiki/Structure_factor

    Consider the scattering of a beam of wavelength by an assembly of particles or atoms stationary at positions , =, …,.Assume that the scattering is weak, so that the amplitude of the incident beam is constant throughout the sample volume (Born approximation), and absorption, refraction and multiple scattering can be neglected (kinematic diffraction).

  4. Wire gauge - Wikipedia

    en.wikipedia.org/wiki/Wire_gauge

    Each notch is stamped with a number, and the wire or sheet, which just fits a given notch, is stated to be of, say, No. 10, 11, 12, etc., of the wire gauge. The circular forms of wire gauge measurement devices are the most popular, and are generally 3 + 3 ⁄ 4 inches (95 mm) in diameter, with thirty-six notches; many have the decimal ...

  5. Wide-angle X-ray scattering - Wikipedia

    en.wikipedia.org/wiki/Wide-angle_X-ray_scattering

    In X-ray crystallography, wide-angle X-ray scattering (WAXS) or wide-angle X-ray diffraction (WAXD) is the analysis of Bragg peaks scattered to wide angles, which (by Bragg's law) are caused by sub-nanometer-sized structures. [1] It is an X-ray-diffraction [2] method and commonly used to determine a range of information about crystalline materials.

  6. Acousto-optic modulator - Wikipedia

    en.wikipedia.org/wiki/Acousto-optic_modulator

    When the incident light beam is at Bragg angle, a diffraction pattern emerges where an order of diffracted beam occurs at each angle θ that satisfies: [3] ⁡ = Here, m = ..., −2, −1, 0, +1, +2, ... is the order of diffraction, λ is the wavelength of light in vacuum, and Λ is the wavelength of the sound. [4]

  7. Unified scattering function - Wikipedia

    en.wikipedia.org/wiki/Unified_Scattering_Function

    where G, R g, and B are constants related to the scattering contrast, structural volume, surface area, and radius of gyration. q is the magnitude of the scattering vector which is related to the Bragg spacing, d, q = 2π/d = 4π/λ sin(θ/2). λ is the wavelength and θ is the scattering angle (2θ in diffraction).

  8. Laue equations - Wikipedia

    en.wikipedia.org/wiki/Laue_equations

    The Laue equations can be written as = = as the condition of elastic wave scattering by a crystal lattice, where is the scattering vector, , are incoming and outgoing wave vectors (to the crystal and from the crystal, by scattering), and is a crystal reciprocal lattice vector.

  9. Distributed Bragg reflector - Wikipedia

    en.wikipedia.org/wiki/Distributed_Bragg_reflector

    Time-resolved simulation of a pulse reflecting from a Bragg mirror. A distributed Bragg reflector (DBR) is a reflector used in waveguides, such as optical fibers.It is a structure formed from multiple layers of alternating materials with different refractive index, or by periodic variation of some characteristic (such as height) of a dielectric waveguide, resulting in periodic variation in the ...