Search results
Results from the WOW.Com Content Network
Given a pre-Hilbert space , an orthonormal basis for is an orthonormal set of vectors with the property that every vector in can be written as an infinite linear combination of the vectors in the basis. In this case, the orthonormal basis is sometimes called a Hilbert basis for . Note that an orthonormal basis in this sense is not generally a ...
If an orthonormal basis is to be produced, then the algorithm should test for zero vectors in the output and discard them because no multiple of a zero vector can have a length of 1. The number of vectors output by the algorithm will then be the dimension of the space spanned by the original inputs.
The Gram-Schmidt theorem, together with the axiom of choice, guarantees that every vector space admits an orthonormal basis. This is possibly the most significant use of orthonormality, as this fact permits operators on inner-product spaces to be discussed in terms of their action on the space's orthonormal basis vectors. What results is a deep ...
Despite the name, an orthonormal basis is not, in general, a basis in the sense of linear algebra (Hamel basis). More precisely, an orthonormal basis is a Hamel basis if and only if the Hilbert space is a finite-dimensional vector space. [90] Completeness of an orthonormal system of vectors of a Hilbert space can be equivalently restated as:
In linear algebra, an orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows are orthonormal vectors. One way to express this is Q T Q = Q Q T = I , {\displaystyle Q^{\mathrm {T} }Q=QQ^{\mathrm {T} }=I,} where Q T is the transpose of Q and I is the identity matrix .
The geometric content of the SVD theorem can thus be summarized as follows: for every linear map : one can find orthonormal bases of and such that maps the -th basis vector of to a non-negative multiple of the -th basis vector of , and sends the leftover basis vectors to zero.
In finite-dimensional spaces, the matrix representation (with respect to an orthonormal basis) of an orthogonal transformation is an orthogonal matrix. Its rows are mutually orthogonal vectors with unit norm, so that the rows constitute an orthonormal basis of V. The columns of the matrix form another orthonormal basis of V.
The Laplace spherical harmonics : form a complete set of orthonormal functions and thus form an orthonormal basis of the Hilbert space of square-integrable functions (). On the unit sphere S 2 {\displaystyle S^{2}} , any square-integrable function f : S 2 → C {\displaystyle f:S^{2}\to \mathbb {C} } can thus be expanded as a linear combination ...