Search results
Results from the WOW.Com Content Network
Atop the troposphere is the tropopause, which is the functional atmospheric border that demarcates the troposphere from the stratosphere. As such, because the tropopause is an inversion layer in which air-temperature increases with altitude, the temperature of the tropopause remains constant. [2] The layer has the largest concentration of nitrogen.
The troposphere is the lowest layer of the Earth's atmosphere; it starts at the planetary boundary layer, and is the layer in which most weather phenomena occur. The troposphere contains the boundary layer, and ranges in height from an average of 9 km (5.6 mi; 30,000 ft) at the poles, to 17 km (11 mi; 56,000 ft) at the Equator.
During very quiet magnetospheric conditions, the still continuously flowing magnetospheric energy input contributes by about 250 K to the residual temperature of 500 K in eq.(2). The rest of 250 K in eq.(2) can be attributed to atmospheric waves generated within the troposphere and dissipated within the lower thermosphere.
From the ground upwards through the troposphere temperature decreases with height; from the tropopause upwards through the stratosphere temperature increases with height. Such variations are examples of temperature gradients. A horizontal temperature gradient may occur, and hence air density variations, where air velocity changes. An example ...
As the sun does not heat the Earth evenly, there is a temperature difference between the poles and the equator, creating air masses with more or less homogeneous temperature with latitude. Differences in atmospheric pressure are also at the origin of the general atmospheric circulation while the air masses are separated by ribbons where ...
In the mesosphere, temperature decreases as altitude increases. This characteristic is used to define limits: it begins at the top of the stratosphere (sometimes called the stratopause), and ends at the mesopause, which is the coldest part of Earth's atmosphere, with temperatures below −143 °C (−225 °F; 130 K).
Water vapor concentration varies considerably, especially in the troposphere, and is a major component of weather. Water evaporation is driven by heat from incoming solar radiation, and temperature variations can cause water-saturated air to expunge water in the form of rain, snow, or fog.
For example, changes in SST monitored via satellite have been used to document the progression of the El Niño-Southern Oscillation since the 1970s. [12] Over land the retrieval of temperature from radiances is harder, because of inhomogeneities in the surface. [13] Studies have been conducted on the urban heat island effect via satellite ...