Search results
Results from the WOW.Com Content Network
The logarithm in the table, however, is of that sine value divided by 10,000,000. [1]: p. 19 The logarithm is again presented as an integer with an implied denominator of 10,000,000. The table consists of 45 pairs of facing pages. Each pair is labeled at the top with an angle, from 0 to 44 degrees, and at the bottom from 90 to 45 degrees.
Logarithms can be used to make calculations easier. For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d.
Binary logarithms are also used in computer science, where the binary system is ubiquitous; in music theory, where a pitch ratio of two (the octave) is ubiquitous and the number of cents between any two pitches is a scaled version of the binary logarithm, or log 2 times 1200, of the pitch ratio (that is, 100 cents per semitone in conventional ...
Logarithmic spiral (pitch 10°) A section of the Mandelbrot set following a logarithmic spiral. A logarithmic spiral, equiangular spiral, or growth spiral is a self-similar spiral curve that often appears in nature. The first to describe a logarithmic spiral was Albrecht Dürer (1525) who called it an "eternal line" ("ewige Linie").
It states that under appropriate conditions the logarithm of a summation is essentially equal to the logarithm of the maximum term in the summation. These conditions are (see also proof below) that (1) the number of terms in the sum is large and (2) the terms themselves scale exponentially with this number.
The roots of the Iwasawa logarithm log p (z) are exactly the elements of C p of the form p r ·ζ where r is a rational number and ζ is a root of unity. [4] Note that there is no analogue in C p of Euler's identity, e 2πi = 1. This is a corollary of Strassmann's theorem.
L is a subclass of NL, which is the class of languages decidable in logarithmic space on a nondeterministic Turing machine.A problem in NL may be transformed into a problem of reachability in a directed graph representing states and state transitions of the nondeterministic machine, and the logarithmic space bound implies that this graph has a polynomial number of vertices and edges, from ...
In mathematics, the polylogarithm (also known as Jonquière's function, for Alfred Jonquière) is a special function Li s (z) of order s and argument z.Only for special values of s does the polylogarithm reduce to an elementary function such as the natural logarithm or a rational function.