Search results
Results from the WOW.Com Content Network
Queueing theory is the mathematical study of waiting lines, or queues. [1] A queueing model is constructed so that queue lengths and waiting time can be predicted. [1] Queueing theory is generally considered a branch of operations research because the results are often used when making business decisions about the resources needed to provide a ...
In queueing theory, a discipline within the mathematical theory of probability, the M/M/c queue (or Erlang–C model [1]: 495 ) is a multi-server queueing model. [2] In Kendall's notation it describes a system where arrivals form a single queue and are governed by a Poisson process, there are c servers, and job service times are exponentially distributed. [3]
The model name is written in Kendall's notation. The model is the most elementary of queueing models [1] and an attractive object of study as closed-form expressions can be obtained for many metrics of interest in this model. An extension of this model with more than one server is the M/M/c queue.
M/M/1 queue: M Y: bulk Markov: Exponential service time with a random variable Y for the size of the batch of entities serviced at one time. M X /M Y /1 queue: D: Degenerate distribution: A deterministic or fixed service time. M/D/1 queue: E k: Erlang distribution: An Erlang distribution with k as the shape parameter (i.e., sum of k i.i.d ...
The Queuing Rule of Thumb (QROT) is a mathematical formula known as the queuing constraint equation when it is used to find an approximation of servers required to service a queue. The formula is written as an inequality relating the number of servers (s), total number of service requestors (N), service time (r), and the maximum time to empty ...
In queueing theory, a discipline within the mathematical theory of probability, an M/G/1 queue is a queue model where arrivals are Markovian (modulated by a Poisson process), service times have a General distribution and there is a single server. [1]
In queueing theory, a discipline within the mathematical theory of probability, the Pollaczek–Khinchine formula states a relationship between the queue length and service time distribution Laplace transforms for an M/G/1 queue (where jobs arrive according to a Poisson process and have general service time distribution). The term is also used ...
In queueing theory, a discipline within the mathematical theory of probability, an M/D/1 queue represents the queue length in a system having a single server, where arrivals are determined by a Poisson process and job service times are fixed (deterministic). The model name is written in Kendall's notation. [1]