enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ramanujan's sum - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_sum

    Srinivasa Ramanujan mentioned the sums in a 1918 paper. [1] In addition to the expansions discussed in this article, Ramanujan's sums are used in the proof of Vinogradov's theorem that every sufficiently large odd number is the sum of three primes. [2]

  3. Partition function (number theory) - Wikipedia

    en.wikipedia.org/wiki/Partition_function_(number...

    The multiplicative inverse of its generating function is the Euler function; by Euler's pentagonal number theorem this function is an alternating sum of pentagonal number powers of its argument. Srinivasa Ramanujan first discovered that the partition function has nontrivial patterns in modular arithmetic , now known as Ramanujan's congruences .

  4. Srinivasa Ramanujan - Wikipedia

    en.wikipedia.org/wiki/Srinivasa_Ramanujan

    Srinivasa Ramanujan Aiyangar [a] (22 December 1887 – 26 April 1920) was an Indian mathematician.Often regarded as one of the greatest mathematicians of all time, though he had almost no formal training in pure mathematics, he made substantial contributions to mathematical analysis, number theory, infinite series, and continued fractions, including solutions to mathematical problems then ...

  5. Integer partition - Wikipedia

    en.wikipedia.org/wiki/Integer_partition

    In number theory and combinatorics, a partition of a non-negative integer n, also called an integer partition, is a way of writing n as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition. (If order matters, the sum becomes a composition.)

  6. Ramanujan's master theorem - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_master_theorem

    In mathematics, Ramanujan's master theorem, named after Srinivasa Ramanujan, [1] is a technique that provides an analytic expression for the Mellin transform of an analytic function. Page from Ramanujan's notebook stating his Master theorem.

  7. Hardy–Ramanujan–Littlewood circle method - Wikipedia

    en.wikipedia.org/wiki/Hardy–Ramanujan...

    Later, I. M. Vinogradov extended the technique, replacing the exponential sum formulation f(z) with a finite Fourier series, so that the relevant integral I n is a Fourier coefficient. Vinogradov applied finite sums to Waring's problem in 1926, and the general trigonometric sum method became known as "the circle method of Hardy, Littlewood and ...

  8. Ramanujan sum - Wikipedia

    en.wikipedia.org/?title=Ramanujan_sum&redirect=no

    Download as PDF; Printable version; From Wikipedia, the free encyclopedia. Redirect page. Redirect to: Ramanujan's sum; Retrieved from " ...

  9. Approximations of π - Wikipedia

    en.wikipedia.org/wiki/Approximations_of_π

    Srinivasa Ramanujan. This converges extraordinarily rapidly. Ramanujan's work is the basis for the fastest algorithms used, as of the turn of the millennium, to calculate π. In 1988, David Chudnovsky and Gregory Chudnovsky found an even faster-converging series (the Chudnovsky algorithm): = = ()! (+) ()! (!