Search results
Results from the WOW.Com Content Network
Acoustic resonance is a phenomenon in which an acoustic system amplifies sound waves whose frequency matches one of its own natural frequencies of vibration (its resonance frequencies). The term "acoustic resonance" is sometimes used to narrow mechanical resonance to the frequency range of human hearing, but since acoustics is defined in ...
A resonator is a device or system that exhibits resonance or resonant behavior. That is, it naturally oscillates with greater amplitude at some frequencies, called resonant frequencies, than at other frequencies. The oscillations in a resonator can be either electromagnetic or mechanical (including acoustic). Resonators are used to either ...
In an SMR structure acoustic mirror(s) providing an acoustic isolation is constructed between the resonator and the surrounding like the substrate. The acoustic mirror (such as a Bragg reflector) typically consists of an odd total number of materials with alternating layers of high and low acoustic impedance materials. The thickness of the ...
Acoustic resonance technology (ART) is an acoustic inspection technology developed by Det Norske Veritas over the past 20 years. ART exploits the phenomenon of half-wave resonance, whereby a suitably excited resonant target (such as a pipeline wall) exhibits longitudinal resonances at certain frequencies characteristic of the target's thickness.
The concept of Helmholtz resonance is fundamental in various fields, including acoustics, engineering, and physics. The resonator itself, termed a Helmholtz resonator, consists of two key components: a cavity and a neck. The size and shape of these components are crucial in determining the resonant frequency, which is the frequency at which the ...
The definition of Q since its first use in 1914 has been generalized to apply to coils and condensers, resonant circuits, resonant devices, resonant transmission lines, cavity resonators, [5] and has expanded beyond the electronics field to apply to dynamical systems in general: mechanical and acoustic resonators, material Q and quantum systems such as spectral lines and particle resonances.
In forced resonance, the resonator starts vibrating because it is in physical contact with a vibrating body, which "forces" the resonator to replicate its oscillations. [5] Both types of resonance are at work in the human voice during speaking and singing. Much of the vibration felt by singers while singing is a result of forced resonance.
Acoustic resonance is an important consideration for instrument builders, as most acoustic instruments use resonators, such as the strings and body of a violin, the length of tube in a flute, and the shape of, and tension on, a drum membrane. Like mechanical resonance, acoustic resonance can result in catastrophic failure of the object at ...