enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    In vector calculus, the Jacobian matrix (/ dʒ ə ˈ k oʊ b i ə n /, [1] [2] [3] / dʒ ɪ-, j ɪ-/) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives.

  3. Broyden's method - Wikipedia

    en.wikipedia.org/wiki/Broyden's_method

    [1] Newton's method for solving f(x) = 0 uses the Jacobian matrix, J, at every iteration. However, computing this Jacobian can be a difficult and expensive operation; for large problems such as those involving solving the Kohn–Sham equations in quantum mechanics the number of variables can be in the hundreds of thousands. The idea behind ...

  4. Jacobian conjecture - Wikipedia

    en.wikipedia.org/wiki/Jacobian_conjecture

    The polynomial xx p has derivative 1 − p x p−1 which is 1 (because px is 0) but it has no inverse function. However, Kossivi Adjamagbo suggested extending the Jacobian conjecture to characteristic p > 0 by adding the hypothesis that p does not divide the degree of the field extension k(X) / k(F). [3]

  5. Quasi-Newton method - Wikipedia

    en.wikipedia.org/wiki/Quasi-Newton_method

    Newton's method to find zeroes of a function of multiple variables is given by + = [()] (), where [()] is the left inverse of the Jacobian matrix of evaluated for .. Strictly speaking, any method that replaces the exact Jacobian () with an approximation is a quasi-Newton method. [1]

  6. Numerical continuation - Wikipedia

    en.wikipedia.org/wiki/Numerical_continuation

    The same terminology applies. A regular solution is a solution at which the Jacobian is full rank (). A singular solution is a solution at which the Jacobian is less than full rank. A regular solution lies on a k-dimensional surface, which can be parameterized by a point in the tangent space (the null space of the Jacobian).

  7. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    For functions of more than one variable, the theorem states that if is a continuously differentiable function from an open subset of into , and the derivative ′ is invertible at a point a (that is, the determinant of the Jacobian matrix of f at a is non-zero), then there exist neighborhoods of in and of = such that () and : is bijective. [1]

  8. Jacobian variety - Wikipedia

    en.wikipedia.org/wiki/Jacobian_variety

    In mathematics, the Jacobian variety J(C) of a non-singular algebraic curve C of genus g is the moduli space of degree 0 line bundles. It is the connected component of the identity in the Picard group of C , hence an abelian variety .

  9. Generalized Jacobian - Wikipedia

    en.wikipedia.org/wiki/Generalized_Jacobian

    For m = 0 the generalized Jacobian J m is just the usual Jacobian J, an abelian variety of dimension g, the genus of C. For m a nonzero effective divisor the generalized Jacobian is an extension of J by a connected commutative affine algebraic group L m of dimension deg(m)−1. So we have an exact sequence 0 → L m → J m → J → 0. The ...