Search results
Results from the WOW.Com Content Network
Figure 1. This Argand diagram represents the complex number lying on a plane.For each point on the plane, arg is the function which returns the angle . In mathematics (particularly in complex analysis), the argument of a complex number z, denoted arg(z), is the angle between the positive real axis and the line joining the origin and z, represented as a point in the complex plane, shown as in ...
In mathematics, an argument of a function is a value provided to obtain the function's result. It is also called an independent variable. [1]For example, the binary function (,) = + has two arguments, and , in an ordered pair (,).
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted i, called the imaginary unit and satisfying the equation =; every complex number can be expressed in the form +, where a and b are real numbers.
In mathematics, the arguments of the maxima (abbreviated arg max or argmax) and arguments of the minima (abbreviated arg min or argmin) are the input points at which a function output value is maximized and minimized, respectively. [note 1] While the arguments are defined over the domain of a function, the output is part of its codomain.
arg – argument of. [2] arg max – argument of the maximum. arg min – argument of the minimum. arsech – inverse hyperbolic secant function. arsinh – inverse hyperbolic sine function. artanh – inverse hyperbolic tangent function. a.s. – almost surely. atan2 – inverse tangent function with two arguments. (Also written as arctan2.)
In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the horizontal x-axis, called the real axis, is formed by the real numbers, and the vertical y-axis, called the imaginary axis, is formed by the imaginary numbers.
The simple contour C (black), the zeros of f (blue) and the poles of f (red). Here we have ′ () =. In complex analysis, the argument principle (or Cauchy's argument principle) is a theorem relating the difference between the number of zeros and poles of a meromorphic function to a contour integral of the function's logarithmic derivative.
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are real numbers, then the complex conjugate of a + b i {\displaystyle a+bi} is a − b i . {\displaystyle a-bi.}