Search results
Results from the WOW.Com Content Network
This reaction is similar to nucleophilic aliphatic substitution where the reactant is a nucleophile rather than an electrophile. The four possible electrophilic aliphatic substitution reaction mechanisms are S E 1, S E 2(front), S E 2(back) and S E i (Substitution Electrophilic), which are also similar to the nucleophile counterparts S N 1 and ...
Substitution reactions in organic chemistry are classified either as electrophilic or nucleophilic depending upon the reagent involved, whether a reactive intermediate involved in the reaction is a carbocation, a carbanion or a free radical, and whether the substrate is aliphatic or aromatic. Detailed understanding of a reaction type helps to ...
Electrophilic aromatic substitution (S E Ar) is an organic reaction in which an atom that is attached to an aromatic system (usually hydrogen) is replaced by an electrophile. Some of the most important electrophilic aromatic substitutions are aromatic nitration , aromatic halogenation , aromatic sulfonation , alkylation Friedel–Crafts ...
Directed ortho metalation (DoM) is an adaptation of electrophilic aromatic substitution in which electrophiles attach themselves exclusively to the ortho-position of a direct metalation group or DMG through the intermediary of an aryllithium compound. [1] The DMG interacts with lithium through a hetero atom.
The carbon-silicon bond is highly electron-releasing and can stabilize a positive charge in the β position through hyperconjugation.Electrophilic additions to allyl- and vinylsilanes take advantage of this, and site selectivity generally reflects this property—electrophiles become bound to the carbon γ to the silyl group.
In organic chemistry, an electrophilic aromatic halogenation is a type of electrophilic aromatic substitution.This organic reaction is typical of aromatic compounds and a very useful method for adding substituents to an aromatic system.
Formylation reactions are a form of electrophilic aromatic substitution and therefore work best with electron-rich starting materials. Phenols are a common substrate, as they readily deprotonate to excellent phenoxide nucleophiles. Other electron-rich substrates, such as mesitylene, pyrrole, or fused aromatic rings can also be expected to react.
Download QR code; Print/export Download as PDF; Printable version; In other projects Wikimedia Commons; ... Electrophilic substitution; Eschweiler–Clarke reaction;