Search results
Results from the WOW.Com Content Network
The nature of the central metal can also influence the absorption spectrum of the metal-macrocycle complex or properties such as excited state lifetime. [ 4 ] [ 5 ] [ 6 ] The tetrapyrrole moiety in organic compounds which is not macrocyclic but still has a conjugated pi-bond system still acts as a chromophore.
Chlorophyll a absorbs light within the violet, blue and red wavelengths. Accessory photosynthetic pigments broaden the spectrum of light absorbed, increasing the range of wavelengths that can be used in photosynthesis. [5] The addition of chlorophyll b next to chlorophyll a extends the absorption spectrum.
[1] [2] In physical and analytical chemistry, infrared spectroscopy (IR spectroscopy) is a technique used to identify chemical compounds based on the way infrared radiation is absorbed by the compound. The absorptions in this range do not apply only to bonds in organic molecules.
In biochemistry, the molar absorption coefficient of a protein at 280 nm depends almost exclusively on the number of aromatic residues, particularly tryptophan, and can be predicted from the sequence of amino acids. [6] Similarly, the molar absorption coefficient of nucleic acids at 260 nm can be predicted given the nucleotide sequence.
In diethyl ether, chlorophyll a has approximate absorbance maxima of 430 nm and 662 nm, while chlorophyll b has approximate maxima of 453 nm and 642 nm. [25] The absorption peaks of chlorophyll a are at 465 nm and 665 nm. Chlorophyll a fluoresces at 673 nm (maximum) and 726 nm.
Top: Absorption spectra for chlorophyll-A, chlorophyll-B, and carotenoids extracted in a solution. Bottom: PAR action spectrum (oxygen evolution per incident photon) of an isolated chloroplast. Chlorophyll , the most abundant plant pigment, is most efficient in capturing red and blue light.
When photosystem I absorbs light, an electron is excited to a higher energy level in the P700 chlorophyll. The resulting P700 with an excited electron is designated as P700*, which is a strong reducing agent due to its very negative redox potential of -1.2V .
Absorbance spectra of free chlorophyll a (blue) and b (red) in a solvent. The action spectra of chlorophyll molecules are slightly modified in vivo depending on specific pigment-protein interactions. An action spectrum is a graph of the rate of biological effectiveness plotted against wavelength of light. [1]