Search results
Results from the WOW.Com Content Network
Perfect multicollinearity refers to a situation where the predictive variables have an exact linear relationship. When there is perfect collinearity, the design matrix has less than full rank, and therefore the moment matrix cannot be inverted.
With any number of random variables in excess of 1, the variables can be stacked into a random vector whose i th element is the i th random variable. Then the variances and covariances can be placed in a covariance matrix, in which the (i, j) element is the covariance between the i th random variable and the j th one.
In geometry, collinearity of a set of points is the property of their lying on a single line. [1] A set of points with this property is said to be collinear (sometimes spelled as colinear [ 2 ] ). In greater generality, the term has been used for aligned objects, that is, things being "in a line" or "in a row".
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.
An entity closely related to the covariance matrix is the matrix of Pearson product-moment correlation coefficients between each of the random variables in the random vector , which can be written as = ( ()) ( ()), where is the matrix of the diagonal elements of (i.e., a diagonal matrix of the variances of for =, …,).
It can be computationally expensive to solve the linear regression problems. Actually, the nth-order partial correlation (i.e., with |Z| = n) can be easily computed from three (n - 1)th-order partial correlations. The zeroth-order partial correlation ρ XY·Ø is defined to be the regular correlation coefficient ρ XY.
In particular, if the related matrix differs from the original one by only a changed, added or deleted row or column, incremental algorithms exist that exploit the relationship. [20] [21] Similarly, it is possible to update the Cholesky factor when a row or column is added, without creating the inverse of the correlation matrix explicitly.
Test multicollinearity [ edit ] If a CV is highly related to another CV (at a correlation of 0.5 or more), then it will not adjust the DV over and above the other CV.