enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    The above equations are the microscopic version of Maxwell's equations, expressing the electric and the magnetic fields in terms of the (possibly atomic-level) charges and currents present. This is sometimes called the "general" form, but the macroscopic version below is equally general, the difference being one of bookkeeping.

  3. Matrix representation of Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    One of the early uses of the matrix forms of the Maxwell's equations was to study certain symmetries, and the similarities with the Dirac equation. The matrix form of the Maxwell's equations is used as a candidate for the Photon Wavefunction. [8] Historically, the geometrical optics is based on the Fermat's principle of least time. Geometrical ...

  4. Introduction to quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_quantum...

    James C. Maxwell's unification of the equations governing electricity, magnetism, and light in the late 19th century led to experiments on the interaction of light and matter. Some of these experiments had aspects which could not be explained until quantum mechanics emerged in the early part of the 20th century. [5]

  5. Maxwell relations - Wikipedia

    en.wikipedia.org/wiki/Maxwell_relations

    The structure of Maxwell relations is a statement of equality among the second derivatives for continuous functions. It follows directly from the fact that the order of differentiation of an analytic function of two variables is irrelevant (Schwarz theorem).

  6. History of Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/History_of_Maxwell's_equations

    [24] [25] Maxwell deals with the motion-related aspect of electromagnetic induction, v × B, in equation (77), which is the same as equation (D) in Maxwell's original equations as listed below. It is expressed today as the force law equation, F = q ( E + v × B ) , which sits adjacent to Maxwell's equations and bears the name Lorentz force ...

  7. Maxwell's equations in curved spacetime - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations_in...

    These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields (or energy / matter in general) induce curvature in spacetime, [ 1 ] Maxwell's equations in flat ...

  8. Covariant formulation of classical electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Covariant_formulation_of...

    The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems.

  9. Classical electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Classical_electromagnetism

    From Maxwell's equations, it is clear that ∇ × E is not always zero, and hence the scalar potential alone is insufficient to define the electric field exactly. As a result, one must add a correction factor, which is generally done by subtracting the time derivative of the A vector potential described below.