enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Matrix multiplication shares some properties with usual multiplication. However, matrix multiplication is not defined if the number of columns of the first factor differs from the number of rows of the second factor, and it is non-commutative, [10] even when the product remains defined after changing the order of the factors. [11] [12]

  3. Cannon's algorithm - Wikipedia

    en.wikipedia.org/wiki/Cannon's_algorithm

    The Scalable Universal Matrix Multiplication Algorithm (SUMMA) [5] is a more practical algorithm that requires less workspace and overcomes the need for a square 2D grid. It is used by the ScaLAPACK, PLAPACK, and Elemental libraries.

  4. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication...

    The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:

  5. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    First, set up the grid by marking its rows and columns with the numbers to be multiplied. Then, fill in the boxes with tens digits in the top triangles and units digits on the bottom. Finally, sum along the diagonal tracts and carry as needed to get the answer. Lattice, or sieve, multiplication is algorithmically equivalent to long multiplication.

  6. Computational complexity of matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...

  7. Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Strassen_algorithm

    The left column visualizes the calculations necessary to determine the result of a 2x2 matrix multiplication. Naïve matrix multiplication requires one multiplication for each "1" of the left column. Each of the other columns (M1-M7) represents a single one of the 7 multiplications in the Strassen algorithm. The sum of the columns M1-M7 gives ...

  8. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    It is called an identity matrix because multiplication with it leaves a matrix unchanged: = = for any m-by-n matrix A. A nonzero scalar multiple of an identity matrix is called a scalar matrix. If the matrix entries come from a field, the scalar matrices form a group, under matrix multiplication, that is isomorphic to the multiplicative group ...

  9. Transpose - Wikipedia

    en.wikipedia.org/wiki/Transpose

    If A is an m × n matrix and A T is its transpose, then the result of matrix multiplication with these two matrices gives two square matrices: A A T is m × m and A T A is n × n. Furthermore, these products are symmetric matrices. Indeed, the matrix product A A T has entries that are the inner product of a row of A with a column of A T.