Search results
Results from the WOW.Com Content Network
A common approach to distance sampling is the use of line transects. The observer traverses a straight line (placed randomly or following some planned distribution). Whenever they observe an object of interest (e.g., an animal of the type being surveyed), they record the distance from their current position to the object ( r ), as well as the ...
In statistics, probability theory, and information theory, a statistical distance quantifies the distance between two statistical objects, which can be two random variables, or two probability distributions or samples, or the distance can be between an individual sample point and a population or a wider sample of points.
In statistics, probability density estimation or simply density estimation is the construction of an estimate, based on observed data, of an unobservable underlying probability density function. The unobservable density function is thought of as the density according to which a large population is distributed; the data are usually thought of as ...
He is one of the developers of distance sampling methods, and is first author on four books on the subject. Buckland was editor of the Journal of Agricultural, Biological and Environmental Statistics [ 10 ] from 2016–2018.
In statistics, more specifically in biostatistics, line-intercept sampling (LIS) is a method of sampling elements in a region whereby an element is sampled if a chosen line segment, called a “transect”, intersects the element.
Abundance estimation comprises all statistical methods for estimating the number of individuals in a population. In ecology, this may be anything from estimating the number of daisies in a field to estimating the number of blue whales in the ocean. [1]
In statistics, the jackknife (jackknife cross-validation) is a cross-validation technique and, therefore, a form of resampling. It is especially useful for bias and variance estimation. The jackknife pre-dates other common resampling methods such as the bootstrap .
In mathematics and statistics, random projection is a technique used to reduce the dimensionality of a set of points which lie in Euclidean space. According to theoretical results, random projection preserves distances well, but empirical results are sparse. [1] They have been applied to many natural language tasks under the name random indexing.