enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Percentage - Wikipedia

    en.wikipedia.org/wiki/Percentage

    The percent value can also be found by multiplying first instead of later, so in this example, the 50 would be multiplied by 100 to give 5,000, and this result would be divided by 1,250 to give 4%. To calculate a percentage of a percentage, convert both percentages to fractions of 100, or to decimals, and multiply them. For example, 50% of 40% is:

  3. Significant figures - Wikipedia

    en.wikipedia.org/wiki/Significant_figures

    Zeros to the right of the last non-zero digit (trailing zeros) in a number with the decimal point are significant if they are within the measurement or reporting resolution. 1.200 has four significant figures (1, 2, 0, and 0) if they are allowed by the measurement resolution.

  4. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.

  5. Duodecimal - Wikipedia

    en.wikipedia.org/wiki/Duodecimal

    If the given number is in duodecimal and the target base is decimal, we get: (duodecimal) 10,000 + 2,000 + 300 + 40 + 5 + 0;6 = (decimal) 20,736 + 3,456 + 432 + 48 + 5 + 0.5. Because the summands are already converted to decimal, the usual decimal arithmetic is used to perform the addition and recompose the number, arriving at the conversion ...

  6. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    In computing, floating-point arithmetic (FP) is arithmetic that represents subsets of real numbers using an integer with a fixed precision, called the significand, scaled by an integer exponent of a fixed base. Numbers of this form are called floating-point numbers. [1]: 3 [2]: 10 For example, 12.345 is a floating-point number in base ten with ...

  7. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...

  8. Rounding - Wikipedia

    en.wikipedia.org/wiki/Rounding

    Approximating a fraction by a fractional decimal number: 5 / 3 1.6667: 4 decimal places: Approximating a fractional decimal number by one with fewer digits 2.1784: 2.18 2 decimal places Approximating a decimal integer by an integer with more trailing zeros 23217: 23200: 3 significant figures Approximating a large decimal integer using ...

  9. Round-off error - Wikipedia

    en.wikipedia.org/wiki/Round-off_error

    Example: the decimal number () = (¯) can be rearranged into + ⏟ … Since the 53-rd bit to the right of the binary point is a 1 and is followed by other nonzero bits, the round-to-nearest rule requires rounding up, that is, add 1 bit to the 52-nd bit.