Search results
Results from the WOW.Com Content Network
A polytropic process is a thermodynamic process that obeys the relation: = where p is the pressure , V is volume , n is the polytropic index , and C is a constant. The polytropic process equation describes expansion and compression processes which include heat transfer.
Neutron stars are well modeled by polytropes with index between n = 0.5 and n = 1. A polytrope with index n = 1.5 is a good model for fully convective star cores [5] [6] (like those of red giants), brown dwarfs, giant gaseous planets (like Jupiter). With this index, the polytropic exponent is 5/3, which is the heat capacity ratio (γ) for ...
This definition is still used today. After Plate's definition, Hans Gruneberg was the first to study the mechanisms of pleiotropy. [3] In 1938 Gruneberg published an article dividing pleiotropy into two distinct types: "genuine" and "spurious" pleiotropy. "Genuine" pleiotropy is when two distinct primary products arise from one locus.
A polytropic process, in particular, causes changes to the system so that the quantity is constant (where is pressure, is volume, and is the polytropic index, a constant). Note that for specific polytropic indexes, a polytropic process will be equivalent to a constant-property process.
An example of this is quasi-static expansion of a mixture of hydrogen and oxygen gas, where the volume of the system changes so slowly that the pressure remains uniform throughout the system at each instant of time during the process. [2] Such an idealized process is a succession of physical equilibrium states, characterized by infinite ...
Biological thermodynamics (Thermodynamics of biological systems) is a science that explains the nature and general laws of thermodynamic processes occurring in living organisms as nonequilibrium thermodynamic systems that convert the energy of the Sun and food into other types of energy.
The index is the polytropic index that appears in the polytropic equation of state, = + where and are the pressure and density, respectively, and is a constant of proportionality. The standard boundary conditions are θ ( 0 ) = 1 {\displaystyle \theta (0)=1} and θ ′ ( 0 ) = 0 {\displaystyle \theta '(0)=0} .
In thermodynamics, a temperature–entropy (T–s) diagram is a thermodynamic diagram used to visualize changes to temperature (T ) and specific entropy (s) during a thermodynamic process or cycle as the graph of a curve. It is a useful and common tool, particularly because it helps to visualize the heat transfer during a process.