enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fatigue (material) - Wikipedia

    en.wikipedia.org/wiki/Fatigue_(material)

    With body-centered cubic materials (bcc), the Wöhler curve often becomes a horizontal line with decreasing stress amplitude, i.e. there is a fatigue strength that can be assigned to these materials. With face-centered cubic metals (fcc), the Wöhler curve generally drops continuously, so that only a fatigue limit can be assigned to these ...

  3. Vibration fatigue - Wikipedia

    en.wikipedia.org/wiki/Vibration_fatigue

    Vibration fatigue is a mechanical engineering term describing material fatigue, caused by forced vibration of random nature. An excited structure responds according to its natural-dynamics modes, which results in a dynamic stress load in the material points. [ 1 ]

  4. Water-energy nexus - Wikipedia

    en.wikipedia.org/wiki/Water-energy_nexus

    Hybrid Sankey diagram of 2011 U.S. interconnected water and energy flows. The water-energy nexus is the relationship between the water used for energy production, [1] including both electricity and sources of fuel such as oil and natural gas, and the energy consumed to extract, purify, deliver, heat/cool, treat and dispose of water (and wastewater) sometimes referred to as the energy intensity ...

  5. Low-cycle fatigue - Wikipedia

    en.wikipedia.org/wiki/Low-cycle_fatigue

    Low cycle fatigue (LCF) has two fundamental characteristics: plastic deformation in each cycle; and low cycle phenomenon, in which the materials have finite endurance for this type of load. The term cycle refers to repeated applications of stress that lead to eventual fatigue and failure; low-cycle pertains to a long period between applications.

  6. Goodman relation - Wikipedia

    en.wikipedia.org/wiki/Goodman_relation

    Within the branch of materials science known as material failure theory, the Goodman relation (also called a Goodman diagram, a Goodman-Haigh diagram, a Haigh diagram or a Haigh-Soderberg diagram) is an equation used to quantify the interaction of mean and alternating stresses on the fatigue life of a material. [1]

  7. Fracture in polymers - Wikipedia

    en.wikipedia.org/wiki/Fracture_in_polymers

    The alternating and maximum values of the maximum principle strain decides the nucleation life in polymer, but there is not yet any theory to quantitatively describe the strain conditions to fatigue life in lab tests. The strain energy density is defined as the energy invested into the volume unit of polymeric material for deformation, also ...

  8. Solder fatigue - Wikipedia

    en.wikipedia.org/wiki/Solder_fatigue

    Solder fatigue is the mechanical degradation of solder due to deformation under cyclic loading. This can often occur at stress levels below the yield stress of solder as a result of repeated temperature fluctuations, mechanical vibrations, or mechanical loads.

  9. Static fatigue - Wikipedia

    en.wikipedia.org/wiki/Static_fatigue

    With static fatigue materials experience damage or failure under stress levels that are lower than their normal ultimate tensile strengths. [2] The exact details vary with the material type and environmental factors, such as moisture presence [3] and temperature. [4] [5] This phenomenon is closely related to stress corrosion cracking. [1]