Search results
Results from the WOW.Com Content Network
As its alternate name (5-methyluracil) suggests, thymine may be derived by methylation of uracil at the 5th carbon. In RNA, thymine is replaced with uracil in most cases. In DNA, thymine (T) binds to adenine (A) via two hydrogen bonds, thereby stabilizing the nucleic acid structures. Thymine combined with deoxyribose creates the nucleoside ...
The first reaction is the simplest of the syntheses, by adding water to cytosine to produce uracil and ammonia: [2] C 4 H 5 N 3 O + H 2 O → C 4 H 4 N 2 O 2 + NH 3. The most common way to synthesize uracil is by the condensation of malic acid with urea in fuming sulfuric acid: [5] C 4 H 4 O 4 + NH 2 CONH 2 → C 4 H 4 N 2 O 2 + 2 H 2 O + CO
Thymine and uracil are distinguished by merely the presence or absence of a methyl group on the fifth carbon (C5) of these heterocyclic six-membered rings. [2] [page needed] In addition, some viruses have aminoadenine (Z) instead of adenine. It differs in having an extra amine group, creating a more stable bond to thymine. [3]
Instead of thymidine, RNA contains uridine (uracil joined to ribose). Uracil is chemically very similar to thymine, which is also known as 5-methyluracil. Since thymine nucleotides are precursors of DNA (but not RNA), the prefix "deoxy" is often left out, i.e., deoxythymidine is often just called thymidine. Thymidine is listed as a chemical ...
The 5'-hydroxyl group is protected by an acid-labile DMT (4,4'-dimethoxytrityl) group. Thymine and uracil , nucleic bases of thymidine and uridine , respectively, do not have exocyclic amino groups and hence do not require any protection.
Methylation of cytosine to form 5-methylcytosine occurs at the same 5 position on the pyrimidine ring where the DNA base thymine's methyl group is located; the same position distinguishes thymine from the analogous RNA base uracil, which has no methyl group. Spontaneous deamination of 5-methylcytosine converts it to thymine. This results in a T ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Cytosine can also be methylated into 5-methylcytosine by an enzyme called DNA methyltransferase or be methylated and hydroxylated to make 5-hydroxymethylcytosine. The difference in rates of deamination of cytosine and 5-methylcytosine (to uracil and thymine) forms the basis of bisulfite sequencing. [8]