enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Scalar (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Scalar_(mathematics)

    A scalar is an element of a field which is used to define a vector space.In linear algebra, real numbers or generally elements of a field are called scalars and relate to vectors in an associated vector space through the operation of scalar multiplication (defined in the vector space), in which a vector can be multiplied by a scalar in the defined way to produce another vector.

  3. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    In three dimensions, the derivative has a special structure allowing the introduction of a cross product: = + = + from which it is easily seen that Gauss's law is the scalar part, the Ampère–Maxwell law is the vector part, Faraday's law is the pseudovector part, and Gauss's law for magnetism is the pseudoscalar part of the equation.

  4. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    When the scalar field is the real numbers, the vector space is called a real vector space, and when the scalar field is the complex numbers, the vector space is called a complex vector space. [4] These two cases are the most common ones, but vector spaces with scalars in an arbitrary field F are also commonly considered.

  5. Scalar (physics) - Wikipedia

    en.wikipedia.org/wiki/Scalar_(physics)

    A scalar in physics and other areas of science is also a scalar in mathematics, as an element of a mathematical field used to define a vector space.For example, the magnitude (or length) of an electric field vector is calculated as the square root of its absolute square (the inner product of the electric field with itself); so, the inner product's result is an element of the mathematical field ...

  6. Quaternion - Wikipedia

    en.wikipedia.org/wiki/Quaternion

    Therefore, nonzero, non-scalar quaternions, or positive scalar quaternions, have exactly two roots, while 0 has exactly one root (0), and negative scalar quaternions have infinitely many roots, which are the vector quaternions located on {} (), i.e., where the scalar part is zero and the vector part is located on the 2-sphere with radius .

  7. Scalar field - Wikipedia

    en.wikipedia.org/wiki/Scalar_field

    Mathematically, a scalar field on a region U is a real or complex-valued function or distribution on U. [1] [2] The region U may be a set in some Euclidean space, Minkowski space, or more generally a subset of a manifold, and it is typical in mathematics to impose further conditions on the field, such that it be continuous or often continuously differentiable to some order.

  8. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    In mathematics, the dot product or scalar product [note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry , the dot product of the Cartesian coordinates of two vectors is widely used.

  9. Divergence - Wikipedia

    en.wikipedia.org/wiki/Divergence

    The source-free part, B, can be similarly written: one only has to replace the scalar potential Φ(r) by a vector potential A(r) and the terms −∇Φ by +∇ × A, and the source density div v by the circulation density ∇ × v. This "decomposition theorem" is a by-product of the stationary case of electrodynamics.