Search results
Results from the WOW.Com Content Network
The lab holds several world records for the world's strongest magnets, including highest magnetic field of 45.5 Tesla. [3] For nuclear magnetic resonance spectroscopy experiments, its 33-short-ton (29-long-ton; 30 t) series connected hybrid (SCH) magnet broke the record during a series of tests conducted by MagLab engineers and scientists on 15 ...
A world record of high magnetic field (31.35 Teslas) was achieved in 1987 within a collaboration including the CEA, the CNRS and the MPI. In 1990 a new 24 MW power supply was set into operation that led to the development of a new generation of magnet that reached progressively 33 T.
The strongest continuous magnetic fields on Earth have been produced by Bitter magnets. The strongest continuous field achieved solely with a resistive magnet is 41.5 tesla as of 22 August 2017, produced by a Bitter electromagnet at the National High Magnetic Field Laboratory in Tallahassee, Florida. [6] [7]
Space might look like a sprawling, inky abyss, but invisible to the human eye is a wealth of magnetic activity. Earth has a magnetic field called the magnetosphere, which is frequently buffeted by ...
A magnetic field is a vector field, but if it is expressed in Cartesian components X, Y, Z, each component is the derivative of the same scalar function called the magnetic potential. Analyses of the Earth's magnetic field use a modified version of the usual spherical harmonics that differ by a multiplicative factor.
35.4 T – the current (2009) world record for a superconducting electromagnet in a background magnetic field [19] 45 T – the current (2015) world record for continuous field magnets [19] 97.4 T – strongest magnetic field produced by a "non-destructive" magnet [20] 100 T – approximate magnetic field strength of a typical white dwarf star
Over time, changes to this innermost layer could impact the planet’s magnetic field, which shields our world from solar radiation — and helps guide the migrations of many animals. Ocean secrets
The K-index quantifies disturbances in the horizontal component of Earth's magnetic field with an integer in the range 0–9 with 1 being calm and 5 or more indicating a geomagnetic storm. It is derived from the maximum fluctuations of horizontal components observed on a magnetometer during a three-hour interval.