enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Harmonic series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_series_(mathematics)

    The series = + = + + is known as the alternating harmonic series. It is conditionally convergent by the alternating series test , but not absolutely convergent . Its sum is the natural logarithm of 2 .

  3. Alternating series test - Wikipedia

    en.wikipedia.org/wiki/Alternating_series_test

    The alternating series test guarantees that an alternating series ... the partial sum of the harmonic series, which is divergent. Hence the original series is ...

  4. Alternating series - Wikipedia

    en.wikipedia.org/wiki/Alternating_series

    Like any series, an alternating series is a convergent series if and only if the sequence of partial sums of the series converges to a limit. The alternating series test guarantees that an alternating series is convergent if the terms a n converge to 0 monotonically, but this condition is not necessary for convergence.

  5. Riemann series theorem - Wikipedia

    en.wikipedia.org/wiki/Riemann_series_theorem

    The alternating harmonic series is a classic example of a conditionally convergent series: = + is convergent, whereas = | + | = = is the ordinary harmonic series, which diverges. Although in standard presentation the alternating harmonic series converges to ln(2) , its terms can be arranged to converge to any number, or even to diverge.

  6. 1 + 2 + 3 + 4 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    The nth partial sum of the series is the triangular number = = (+), which increases without bound as n goes to infinity. Because the sequence of partial sums fails to converge to a finite limit, the series does not have a sum. Although the series seems at first sight not to have any meaningful value at all, it can be manipulated to yield a ...

  7. Absolute convergence - Wikipedia

    en.wikipedia.org/wiki/Absolute_convergence

    If a series is convergent but not absolutely convergent, it is called conditionally convergent. An example of a conditionally convergent series is the alternating harmonic series. Many standard tests for divergence and convergence, most notably including the ratio test and the root test, demonstrate absolute convergence.

  8. Divergence of the sum of the reciprocals of the primes

    en.wikipedia.org/wiki/Divergence_of_the_sum_of...

    In the following, a sum or product taken over p always represents a sum or product taken over a specified set of primes. The proof rests upon the following four inequalities: Every positive integer i can be uniquely expressed as the product of a square-free integer and a square as a consequence of the fundamental theorem of arithmetic .

  9. 1/2 + 1/4 + 1/8 + 1/16 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1/2_%2B_1/4_%2B_1/8_%2B_1/...

    The geometric series on the real line. In mathematics, the infinite series ⁠ 1 / 2 ⁠ + ⁠ 1 / 4 ⁠ + ⁠ 1 / 8 ⁠ + ⁠ 1 / 16 ⁠ + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation, this may be expressed as