Search results
Results from the WOW.Com Content Network
As mentioned earlier in the article the convection heat transfer coefficient for each stream depends on the type of fluid, flow properties and temperature properties. Some typical heat transfer coefficients include: Air - h = 10 to 100 W/(m 2 K) Water - h = 500 to 10,000 W/(m 2 K).
where ˙ is the heat transferred per unit time, A is the area of the object, h is the heat transfer coefficient, T is the object's surface temperature, and T f is the fluid temperature. [8] The convective heat transfer coefficient is dependent upon the physical properties of the fluid and the physical situation.
In convective heat transfer, Newton's Law is followed for forced air or pumped fluid cooling, where the properties of the fluid do not vary strongly with temperature, but it is only approximately true for buoyancy-driven convection, where the velocity of the flow increases with temperature difference.
This coefficient accounts for the time lag between the outdoor and indoor temperature peaks. Depending on the properties of the building envelope, a delay is present when observing the amount of heat being transferred inside from the outdoors. The CLF is the cooling load at a given time compared to the heat gain from earlier in the day. [1] [5]
Newton's law of cooling (in the form of heat loss per surface area being equal to heat transfer coefficient multiplied by temperature gradient) can then be invoked to determine the heat loss or gain from the object, fluid and/or surface temperatures, and the area of the object, depending on what information is known.
In thermal fluid dynamics, the Nusselt number (Nu, after Wilhelm Nusselt [1]: 336 ) is the ratio of total heat transfer to conductive heat transfer at a boundary in a fluid. Total heat transfer combines conduction and convection. Convection includes both advection (fluid motion) and diffusion (conduction). The conductive component is measured ...
As noted, a Biot number smaller than about 0.1 shows that the conduction resistance inside a body is much smaller than heat convection at the surface, so that temperature gradients are negligible inside of the body. In this case, the lumped-capacitance model of transient heat transfer can be used. (A Biot number less than 0.1 generally ...
The number of transfer units (NTU) method is used to calculate the rate of heat transfer in heat exchangers (especially parallel flow, counter current, and cross-flow exchangers) when there is insufficient information to calculate the log mean temperature difference (LMTD). Alternatively, this method is useful for determining the expected heat ...