Search results
Results from the WOW.Com Content Network
The primary difference between a computer algebra system and a traditional calculator is the ability to deal with equations symbolically rather than numerically. The precise uses and capabilities of these systems differ greatly from one system to another, yet their purpose remains the same: manipulation of symbolic equations.
Free modified BSD license: Python-based TI-Nspire CAS (Computer Software) Texas Instruments: 2006 2009 5.1.3: 2020 Proprietary: Successor to Derive. Based on Derive's engine used in TI-89/Voyage 200 and TI-Nspire handheld Wolfram Alpha: Wolfram Research: 2009 2013: Pro version: $4.99 / month, Pro version for students: $2.99 / month, ioRegular ...
Wolfram Research: 14.2.0 (January 23, 2025; 29 days ago (7] Regularly: Proprietary: Linux, Mac OS X, Windows, Raspbian, Online service. MATLAB Partial Differential Equation Toolbox: MATLAB Toolbox for solving structural, thermal, electromagnetics, and other general PDEs: MathWorks: 3.3 (R2019b) 2019-09-11: Proprietary commercial software
via Wolfram Alpha: Windows, macOS (32-bit, 64-bit), Android, iOS: Also supports Microsoft Word equations, Wolfram Alpha to see the computation results and answers, MathJax, Google Docs equations, MathType equations, Wiki equations, AsciiMathML, and Text-To-Speech to read out math expressions. Personal Edition is for general purpose use.
Wolfram Language WolframAlpha ( / ˈ w ʊ l f . r əm -/ WUULf-rəm- ) is an answer engine developed by Wolfram Research . [ 1 ] It is offered as an online service that answers factual queries by computing answers from externally sourced data.
Consider a linear non-homogeneous ordinary differential equation of the form = + (+) = where () denotes the i-th derivative of , and denotes a function of .. The method of undetermined coefficients provides a straightforward method of obtaining the solution to this ODE when two criteria are met: [2]
In mathematics, the method of characteristics is a technique for solving partial differential equations.Typically, it applies to first-order equations, though in general characteristic curves can also be found for hyperbolic and parabolic partial differential equation.
The Bogacki–Shampine method is implemented in the ode3 for fixed step solver and ode23 for a variable step solver function in MATLAB (Shampine & Reichelt 1997). Low-order methods are more suitable than higher-order methods like the Dormand–Prince method of order five, if only a crude approximation to the solution is required.