enow.com Web Search

  1. Ad

    related to: kinetic friction coefficient calculator for steel beam strength

Search results

  1. Results from the WOW.Com Content Network
  2. Euler's critical load - Wikipedia

    en.wikipedia.org/wiki/Euler's_critical_load

    Euler's critical load or Euler's buckling load is the compressive load at which a slender column will suddenly bend or buckle. It is given by the formula: [1] where. P c r {\displaystyle P_ {cr}} , Euler's critical load (longitudinal compression load on column), E {\displaystyle E} , Young's modulus of the column material, I {\displaystyle I ...

  3. Drucker–Prager yield criterion - Wikipedia

    en.wikipedia.org/wiki/Drucker–Prager_yield...

    From Wikipedia, the free encyclopedia. Figure 1: View of Drucker–Prager yield surface in 3D space of principal stresses for c=2,ϕ=−20∘{\displaystyle c=2,\phi =-20^{\circ }} The Drucker–Prager yield criterion[1]is a pressure-dependent model for determining whether a material has failed or undergone plastic yielding.

  4. von Mises yield criterion - Wikipedia

    en.wikipedia.org/wiki/Von_Mises_yield_criterion

    t. e. In continuum mechanics, the maximum distortion energy criterion (also von Mises yield criterion[1]) states that yielding of a ductile material begins when the second invariant of deviatoric stress reaches a critical value. [2] It is a part of plasticity theory that mostly applies to ductile materials, such as some metals.

  5. Mohr–Coulomb theory - Wikipedia

    en.wikipedia.org/wiki/Mohr–Coulomb_theory

    Mohr–Coulomb theory is a mathematical model (see yield surface) describing the response of brittle materials such as concrete, or rubble piles, to shear stress as well as normal stress. Most of the classical engineering materials follow this rule in at least a portion of their shear failure envelope. Generally the theory applies to materials ...

  6. Timoshenko–Ehrenfest beam theory - Wikipedia

    en.wikipedia.org/wiki/Timoshenko–Ehrenfest_beam...

    The Timoshenko–Ehrenfest beam theory was developed by Stephen Timoshenko and Paul Ehrenfest [1][2][3] early in the 20th century. [4][5] The model takes into account shear deformation and rotational bending effects, making it suitable for describing the behaviour of thick beams, sandwich composite beams, or beams subject to high- frequency ...

  7. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    The ultimate strength is the maximum stress that a material can withstand before it breaks or weakens. [12] For example, the ultimate tensile strength (UTS) of AISI 1018 Steel is 440 MPa. In Imperial units, the unit of stress is given as lbf/in 2 or pounds-force per square inch. This unit is often abbreviated as psi.

  8. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    Euler–Bernoulli beam theory (also known as engineer's beam theory or classical beam theory) [1] is a simplification of the linear theory of elasticity which provides a means of calculating the load-carrying and deflection characteristics of beams. It covers the case corresponding to small deflections of a beam that is subjected to lateral ...

  9. Coefficient of restitution - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_restitution

    The coefficient of restitution (COR, also denoted by e), is the ratio of the relative velocity of separation after collision to the relative velocity of approach before collision. It can also be defined as the square root of the ratio of the final kinetic energy to the initial kinetic energy. It normally ranges from 0 to 1 where 1 would be a ...

  1. Ad

    related to: kinetic friction coefficient calculator for steel beam strength