enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Alnico - Wikipedia

    en.wikipedia.org/wiki/Alnico

    Alnico alloys can be magnetised to produce strong magnetic fields and have a high coercivity (resistance to demagnetization), thus making strong permanent magnets. Of the more commonly available magnets, only rare-earth magnets such as neodymium and samarium-cobalt are stronger.

  3. Force between magnets - Wikipedia

    en.wikipedia.org/wiki/Force_between_magnets

    The magnetic pole model assumes that the magnetic forces between magnets are due to magnetic charges near the poles. This model works even close to the magnet when the magnetic field becomes more complicated, and more dependent on the detailed shape and magnetization of the magnet than just the magnetic dipole contribution.

  4. Magnet - Wikipedia

    en.wikipedia.org/wiki/Magnet

    For a bar magnet, the direction of the magnetic moment points from the magnet's south pole to its north pole, [15] and the magnitude relates to how strong and how far apart these poles are. In SI units, the magnetic moment is specified in terms of A·m 2 (amperes times meters squared).

  5. Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.

  6. Halbach array - Wikipedia

    en.wikipedia.org/wiki/Halbach_array

    Flux distribution for a flat refrigerator magnet Schematic diagram of a free-electron laser. Scaling up this design and adding a top sheet gives a wiggler magnet, used in synchrotrons and free-electron lasers. Wiggler magnets wiggle, or oscillate, an electron beam perpendicular to the magnetic field.

  7. Programmable magnet - Wikipedia

    en.wikipedia.org/wiki/Programmable_magnet

    Correlated magnets can be programmed to interact only with other magnetic structures that have been coded to respond. Correlated magnets can even be programmed to attract and repel at the same time. Compared to conventional magnets, the correlated magnet provides much stronger holding force to the target and stronger shear resistance.

  8. Horseshoe magnet - Wikipedia

    en.wikipedia.org/wiki/Horseshoe_magnet

    The shape of the magnet was originally created as a replacement for the bar magnet as it makes the magnetic field stronger for a magnet of comparable strength. [5] A horseshoe magnet is stronger because both poles of the magnet are closer to each other and in the same plane which allows the magnetic lines of flux to flow along a more direct path between the poles and concentrates the magnetic ...

  9. Upgrade to a faster, more secure version of a supported browser. It's free and it only takes a few moments: