enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Void (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Void_(astronomy)

    Regions of higher density collapsed more rapidly under gravity, eventually resulting in the large-scale, foam-like structure or "cosmic web" of voids and galaxy filaments seen today. Voids located in high-density environments are smaller than voids situated in low-density spaces of the universe. [3]

  3. Cosmological principle - Wikipedia

    en.wikipedia.org/wiki/Cosmological_principle

    In modern physical cosmology, the cosmological principle is the notion that the spatial distribution of matter in the universe is uniformly isotropic and homogeneous when viewed on a large enough scale, since the forces are expected to act equally throughout the universe on a large scale, and should, therefore, produce no observable inequalities in the large-scale structuring over the course ...

  4. Argon - Wikipedia

    en.wikipedia.org/wiki/Argon

    Argon is the most abundant noble gas in Earth's crust, comprising 0.00015% of the crust. Nearly all argon in Earth's atmosphere is radiogenic argon-40, derived from the decay of potassium-40 in Earth's crust. In the universe, argon-36 is by far the most common argon isotope, as it is the most easily produced by stellar nucleosynthesis in ...

  5. Inhomogeneous cosmology - Wikipedia

    en.wikipedia.org/wiki/Inhomogeneous_cosmology

    An inhomogeneous cosmology is a physical cosmological theory (an astronomical model of the physical universe's origin and evolution) which, unlike the dominant cosmological concordance model, assumes that inhomogeneities in the distribution of matter across the universe affect local gravitational forces (i.e., at the galactic level) enough to skew our view of the Universe. [3]

  6. Observable universe - Wikipedia

    en.wikipedia.org/wiki/Observable_universe

    Because of the universe's expansion, there may be some later age at which a signal sent from the same galaxy can never reach the Earth at any point in the infinite future, so, for example, we might never see what the galaxy looked like 10 billion years after the Big Bang, [19] even though it remains at the same comoving distance less than that ...

  7. Dark energy - Wikipedia

    en.wikipedia.org/wiki/Dark_energy

    The density of dark matter in an expanding universe decreases more quickly than dark energy, and eventually the dark energy dominates. Specifically, when the volume of the universe doubles, the density of dark matter is halved, but the density of dark energy is nearly unchanged (it is exactly constant in the case of a cosmological constant).

  8. Flatness problem - Wikipedia

    en.wikipedia.org/wiki/Flatness_problem

    The local geometry of the universe is determined by whether the relative density Ω is less than, equal to or greater than 1. From top to bottom: a spherical universe with greater than critical density (Ω>1, k>0); a hyperbolic, underdense universe (Ω<1, k<0); and a flat universe with exactly the critical density (Ω=1, k=0). The spacetime of ...

  9. Steady-state model - Wikipedia

    en.wikipedia.org/wiki/Steady-state_model

    On the other hand, the steady-state model says while the universe is expanding, it nevertheless does not change its appearance over time (the perfect cosmological principle). E.g., the universe has no beginning and no end. This required that matter be continually created in order to keep the universe's density from decreasing.