enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    In particular, any differentiable function must be continuous at every point in its domain. The converse does not hold: a continuous function need not be differentiable. For example, a function with a bend, cusp, or vertical tangent may be continuous, but fails to be differentiable at the location of the anomaly.

  3. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    Product rule: For two differentiable functions f and g, () = +. An operation d with these two properties is known in abstract algebra as a derivation . They imply the power rule d ( f n ) = n f n − 1 d f {\displaystyle d(f^{n})=nf^{n-1}df} In addition, various forms of the chain rule hold, in increasing level of generality: [ 12 ]

  4. List of types of functions - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_functions

    Holomorphic function: complex-valued function of a complex variable which is differentiable at every point in its domain. Meromorphic function: complex-valued function that is holomorphic everywhere, apart from at isolated points where there are poles. Entire function: A holomorphic function whose domain is the entire complex plane.

  5. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    A function of a real variable is differentiable at a point of its domain, if its domain contains an open interval containing ⁠ ⁠, and the limit = (+) exists. [2] This means that, for every positive real number ⁠ ⁠, there exists a positive real number such that, for every such that | | < and then (+) is defined, and | (+) | <, where the vertical bars denote the absolute value.

  6. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    For any functions and and any real numbers and , the derivative of the function () = + with respect to is ′ = ′ + ′ (). In Leibniz's notation , this formula is written as: d ( a f + b g ) d x = a d f d x + b d g d x . {\displaystyle {\frac {d(af+bg)}{dx}}=a{\frac {df}{dx}}+b{\frac {dg}{dx}}.}

  7. Darboux's theorem (analysis) - Wikipedia

    en.wikipedia.org/wiki/Darboux's_theorem_(analysis)

    It states that every function that results from the differentiation of another function has the intermediate value property: the image of an interval is also an interval. When ƒ is continuously differentiable ( ƒ in C 1 ([ a , b ])), this is a consequence of the intermediate value theorem .

  8. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    A Lipschitz function g : R → R is absolutely continuous and therefore is differentiable almost everywhere, that is, differentiable at every point outside a set of Lebesgue measure zero. Its derivative is essentially bounded in magnitude by the Lipschitz constant, and for a < b , the difference g ( b ) − g ( a ) is equal to the integral of ...

  9. Weierstrass function - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_function

    The Weierstrass function has historically served the role of a pathological function, being the first published example (1872) specifically concocted to challenge the notion that every continuous function is differentiable except on a set of isolated points. [1]